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The filamentous cytoskeletal systems 
fulfil seemingly incompatible func-

tions by maintaining a stable scaffolding 
to ensure tissue integrity and simulta-
neously facilitating rapid adaptation to 
intracellular processes and environmen-
tal stimuli. This paradox is particularly 
obvious for the abundant keratin inter-
mediate filaments in epithelial tissues. 
The epidermal keratin cytoskeleton, for 
example, supports the protective and 
selective barrier function of the skin 
while enabling rapid growth and remod-
elling in response to physical, chemical 
and microbial challenges. We propose 
that these dynamic properties are linked 
to the perpetual re-cycling of keratin 
intermediate filaments that we observe 
in cultured cells. This cycle of assem-
bly and disassembly is independent of 
protein biosynthesis and consists of dis-
tinct, temporally and spatially defined 
steps. In this way, the keratin cytoskel-
eton remains in constant motion but 
stays intact and is also able to restructure 
rapidly in response to specific regulatory 
cues as is needed, e.g., during division, 
differentiation and wound healing.

Introduction

The Greek “ i” (panta rhei), 
everything is in flow, refers to an ancient 
concept that can be traced back to the pre-
Socratic philosopher Heraklit (~520–460 
BC). Its basic tenet that everything is in 
motion and subject to continuous change 
has survived until today. We have chosen 
this aphorism to characterize properties 
of a system, which at first sight does not 
seem to be a good example. Among the 
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cytoplasmic filament systems the inter-
mediate filaments are certainly not known 
for their rapid changes but rather for their 
scaffolding function in tissue architecture. 
Their pronounced stability is reflected by 
the extremely long half life of their poly-
peptide components which, in the case of 
the neuronal cytoskeleton, may be in the 
range of months or even years.1,2 Multiple 
diseases further attest to the stabilizing 
scaffolding functions of these filaments. 
Thus, a large number of point mutations 
have been described in the genes encod-
ing epidermal keratins acting in a domi-
nant negative fashion and leading to skin 
blistering presumably by weakening the 
epithelial cytoskeleton.3 On the other 
hand, epithelia cannot be static but must 
be dynamic to meet the various chal-
lenges imposed by their environment. 
Regeneration is a very efficient mecha-
nism to accomplish this and epithelia are 
among the fastest dividing tissues. Cell 
division and subsequent differentiation 
are accompanied by substantial changes in 
shape, position and cell architecture (e.g., 
from the crypt base to the villar tip in the 
intestine or from the basal to the supra-
basal compartment in stratified epithelia). 
Furthermore, epithelial morphogenetic 
events are among the most prominent 
developmental phenomena, for example 
during gland formation and neural tube 
formation. The dynamic nature of epithe-
lia becomes even more apparent in various 
stress situations which require substantial 
plasticity as is the case, e.g., after wound-
ing. All these properties require a rapidly 
adaptable and pliable cytoskeleton. In 
accordance, we have recently observed 
that the keratin cytoskeleton in cultured 
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time after cell fusion. Extensive mixing is 
first observed in the cell periphery and only 
later in the perinuclear zone. These obser-
vations are in full agreement with previous 
fusion experiments,14 which, in addition, 
demonstrated isotype-specific differences 
in mixing kinetics thereby extending in 
vitro observations on the promiscuity of 
keratins with pair-specific assembly and 
stability properties.15,16 Comparable situa-
tions occur in vivo and have been well doc-
umented. For example, in the epidermis 
keratins 5/14 mRNAs are predominantly 
localized in the basal cell compartment. 
Protein expression, however, persists in 
the suprabasal cell layers which produce 
keratins 1/10 mRNAs. Yet, the keratin 
networks containing the different encoded 
polypeptides are not separable but com-
pletely co-localize.17,18 Thus, switches in 
keratin network composition occurring 
during development, differentiation or in 
various stress paradigms may be accom-
plished by gradual network exchange 
through continuous disassembly/reassem-
bly cycles without the need of network 
disruption or de novo network formation. 
Consequently, different admixtures of 
keratins may confer specific intermediate 
properties on a given epithelial cell thereby 
fine-tuning context-dependent functions 
that have been linked to the keratin cyto-
skeleton such as cell motility, organelle 
trafficking, translation, signaling, immune 
response and cell survival.19-26

Keratin Cycling is Spatially  
Organized to Support Polarized 
Cell Shape Change and Motility

A distinguishing feature of intermediate 
filaments in comparison to the other cyto-
skeletal filaments is their lack of polar-
ity because of the full symmetry of their 
tetrameric assembly units.27 It was there-
fore suggested that intermediate filament 
plasticity is governed by lateral exchange 
of subunits throughout the entire network 
(reviewed in ref. 28–30). The heterogene-
ity in filament diameter further supports 
this notion (for keratins see ref. 31). Our 
own observations in living cells, however, 
show that other modes exist and may even 
be prevalent.4,32-34 Video 1 presents a typi-
cal example of a time lapse-recording of 
fluorescently-labeled keratins in a cultured 

presumably leading to subsequent degra-
dation.5-7 This mechanism is upregulated 
in stress situations, i.e., during cytoskeletal 
remodeling8,9 and occurs preferentially 
for mutant, i.e., misfolded keratins.10-12 
Furthermore, based on observations on 
vimentin a model of “dynamic co-trans-
lation” was proposed by which de novo 
filament synthesis is linked to microtubule-
dependent integration of newly-formed 
filaments into the network.13 Observations 
from our laboratory, however, show that 
degradation and de novo formation do 
not account for the full spectrum of kera-
tin filament network plasticity. Complete 
inhibition of protein biosynthesis does not 
abrogate filament formation.4 In accor-
dance, using photoactivatable fluorescent 
keratins it was noted that these keratins 
“spread” throughout the cell.4 Figure 
2A–C’ shows that this is due to co-assem-
bly of the photoactivated keratin with 
endogenous, non-photoactivated keratins. 
A similar “mixing” of filaments occurs 
upon cell fusion. Figure 2D–D’’ presents 
an example of a heterokaryon consisting of 
a cell producing green keratins and another 
cell producing red keratins. Increasing 
amounts of mixed filaments appear over 

cells is not static but subject to constant 
protein biosynthesis-independent turn-
over that we refer to as the “keratin cycle” 
(Fig. 1; details in ref. 4). The cycle sup-
ports both continued cytoskeletal filament 
network integrity and filament network 
remodeling. We therefore propose that the 
keratin cycle is tightly linked to epithelial 
plasticity which is needed for sustaining 
the complex barrier function that is both 
resilient and responsive.

The Keratin Cycle Operates in the 
Absence of Protein Biosynthesis 
and Allows “Mixing” of Filaments

Biological structures are subject to con-
tinuous restructuring thereby allowing 
architectural and functional adaptation to 
requirements imposed by the cell itself and 
its environment. The restructuring can be 
accomplished by two fundamentally dif-
ferent mechanisms: either by degradation 
and replacement through de novo syn-
thesis or by disassembly and subsequent 
reassembly both of which need not be 
exclusive but may be used in combina-
tion. In support of the first mode, keratin  
ubiquitination has been described 

Figure 1. Schematic representation of the keratin cycle of assembly and disassembly. Steps of the 
keratin cycle are listed at left which occur in topologically defined regions starting with nucle-
ation in the vicinity of focal adhesions in the cell periphery, followed by particle elongation and 
particle integration into the peripheral keratin filament network. Filaments within the network 
further bundle. Inward-transport of keratin particles and keratin filaments relies mainly on actin 
filaments but also on microtubules. Inward-moving and bundling filaments disassemble into 
soluble subunits that diffuse throughout the cytoplasm and are re-utilized for another round of 
assembly. Alternatively, filaments mature and serve as a stable encasement of the nucleus. The 
fluorescence micrograph at right is taken from a time-lapse recording (see corresponding Video 1) 
of a vulvar carcinoma-derived A431 subclone producing fluorescent human keratin 13 chimera 
HK13-EGFP.33 Bar, 10 μm.



www.landesbioscience.com	 BioArchitecture	 41

grow toward the leading edge while fila-
ments in the trailing edge need to be disas-
sembled/retracted. This is indeed what is 
observed in migrating cells.35,37

Keratin Cycling is Linked  
to the Environment  

through Cell Adhesions

Intricately involved in cell migration 
are focal adhesions, which are hotspots 
of mechanical coupling and signal-
ing between cells and their surround-
ing extracellular matrix. Focal adhesions 
coordinate cytoskeletal organization 
by anchorage of actin stress fibers (e.g., 
reviewed in ref. 38–40) and by cross talk 

cytoplasm and are re-utilized for another 
round of assembly. Details of this pro-
cess have been worked out for cultured 
cells4,32-36 and are summarized in Figure 
1. The point that we would like to make 
here is that this mode of keratin cycling 
is, in contrast to the previously proposed 
non-selective lateral exchange mechanism, 
compartmentalized. Thus, specialized 
regions exist within cells that favor/allow 
keratin filament assembly whereas other 
regions favor/allow keratin disassembly. 
In this way, the intrinsically non-polar 
network becomes differentially orga-
nized, which is needed in polarized cells, 
most notably in migrating cells. In this 
instance, the network needs to assemble/

epithelial cell. Perpetual inward motion 
of fluorescent material is readily apparent 
starting with small particles that appear in 
the cell periphery (“nucleation”), enlarge 
(“elongation”), and are subsequently 
incorporated into the peripheral network 
(“integration”). Filaments move further 
toward the nucleus while they fuse later-
ally (“bundling”). Movement of growing 
and bundling filaments is orchestrated 
primarily by actin filaments but also relies 
on microtubules.34,35 Some filaments dis-
solve into soluble subunits (“disassembly”) 
while others are stabilized, notably those 
that are anchored to the nucleus and to des-
mosomes (“maturation”). Disassembled 
subunits diffuse rapidly throughout the 

Figure 2. Filament mixing after photoactivation (A–C’) and cell fusion (D–D’’). (A–C’) Hepatocellular carcinoma-derived PLC cells were co-transfected 
with a construct coding for a photoactivatable GFP fused to human keratin 8 (HK8-paGFP; reviewed in ref. 4) together with a construct coding for a 
human keratin 18-red fluorescent protein hybrid (HK18-RFP; reviewed in ref. 66). HK8-paGFP was activated by irradiation with UV light (405 nm) at 
time point 0 min. Fluorescence was recorded at 488 nm and 561 nm by time-lapse fluorescence microscopy. Note that the photoactivated HK8-
paGFP is evenly distributed throughout the endogenous network at 570 min. Bar, 10 μm. (D–D’’) PLC-derived PK18-5 cells expressing human keratin 
18-enhanced yellow fluorescent protein chimera HK18-YFP36 and PK8-7 cells producing human keratin 8-mCherry chimera HK8-mCherry66 were fused 
by treatment with polyethylene glycol (PEG 1500) after mixing according to published procedures.67 Heterokaryons were fixed with methanol and 
acetone 3 h after fusion and imaged by confocal laser scanning microscopy. Note mixing of filaments predominantly in the peripheral cytoskeleton. 
N1, nucleus of HK8-mCherry-producing parent cell; N2, nucleus of HK18-YFP-producing parent cell. Bar, 10 μm.
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keratin cytoskeleton.57 This may be of 
particular relevance for keratin mutations 
that do not directly perturb network orga-
nization and do not directly induce dis-
ease but are considered to be disease risk 
factors.61 It will therefore be interesting to 
examine, how keratin cycling is affected 
in the different transgenic mouse models 
carrying mutant human keratins that have 
been shown to be associated with altered 
susceptibility to liver disease.22,62,63 Recent 
observations link sumoylation to keratin 
cycling in these situations64 and observa-
tions in the model organism C. elegans 
further support this notion, since reduced 
intermediate filament turnover because of 
altered sumoylation results in embryonic 
developmental defects.65

The keratin cycle provides a conceptual 
framework that should help to understand 
the cross talk between the keratin cyto-
skeleton and epithelial plasticity as a prime 
prerequisite for proper tissue function. 
Cycling may range from barely detectable 
in fully differentiated cells to very rapid 
in motile cells and thus cover the full 
dynamic spectrum occurring at different 
temporal and spatial scales and thereby 
providing copious evidence for the pre-
Socratic idea of “panta rhei.” In contrast to 
the old philosophers’ view, however, this 
phenomenon is not only a pervasive prop-
erty of all matter but is part of the “cycle 
of life,” which is economical and makes 
use of available material to continuously 
probe the environment in the pursuit of 
functional and structural optimization.
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