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C9ORF72 Chromosome 9 open reading frame 72 

DAB 3,3'-Diaminobenzidine 

DAMP Danger associated molecular pattern 

fALS familiar ALS 
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IPAF ICE-Protease Activating Factor 

mROS mitochondrial reactive oxygen species 

MS Multiple sclerosis 

NLR Nod-like receptor 

NLRC4 NLR family CARD domain-containing 4 

NLRP1 Nod-like receptor protein 1 

NLRP3 Nod-like receptor protein 3 

NOD-like Nucleotide-binding oligomerization domain-like 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PRR Pattern recognition receptor 

sALS Sporadic ALS 

SCI Spinal cord injury 

SOD1 Superoxide dismutase 1 

TDP43 TAR DNA binding protein 

WT Wild type 

 

Abstract 

Aims: Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of 

motoneurons and progressive muscle wasting. Inflammatory processes, mediated by 

non-neuronal cells, such as glial cells, are known to contribute to disease progres-

sion. Inflammasomes consist of pattern recognition receptors (PPRs), ASC and 

caspase 1 and are essential for interleukin (IL) processing and a rapid immune re-

sponse after tissue damage. Recently, we described inflammasome activation in the 

spinal cord of ALS patients and in SOD1(G93A) ALS mice. Since pathological changes 
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in the skeletal muscle are early events in ALS, we hypothesized that PRRs might be 

abnormally expressed in muscle fibre degeneration. 

 

Methods: Western Blot analysis, real-time PCR and immunohistochemistry were 

performed with muscle tissue from pre-symptomatic and early-symptomatic male 

SOD1(G93A) mice and with muscle biopsies of control and sporadic ALS patients. 

Analysed PRRs include NLRP1, NLRP3, NLRC4 and AIM2. Additionally, expression 

levels of ASC, caspase 1, IL1and IL18 were evaluated. 

 

Results: Expression of PRRs and ASC was detected in murine and human tissue. 

The PRR NLRC4, caspase 1 and IL1 were significantly elevated in denervated 

muscle of SOD1(G93A) mice and sALS patients. Furthermore, levels of caspase 1 and 

IL1 were already increased in pre-symptomatic animals.   

 

Conclusion: Our findings suggest that increased inflammasome activation may be 

involved in skeletal muscle pathology in ALS. Furthermore, elevated levels of 

NLRC4, caspase 1 and IL1reflect early changes in the skeletal muscle and may 

contribute to the denervation process. 

 

Introduction 

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease, af-

fecting upper and lower motoneurons in the cerebral cortex, brainstem and spinal 

cord. Leading symptoms are progressive muscle weakness and atrophy, ultimately 

resulting in paralysis [1]. Respiratory failure is the most common cause of death, 

usually 3-5 years after the onset of symptoms [2]. About 90% of cases are consid-

ered sporadic ALS (sALS), with no obvious risk factors noted [2, 3]. The inherited 

form of ALS (familial ALS, fALS) accounts for ~10% of all ALS cases and a set of 

mutant genes is associated with fALS. Currently, the most common fALS mutation is 

found in chromosome 9 open reading frame 72 (C9orf72, >40%), followed by muta-



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

tions in the superoxide dismutase 1 (SOD1) gene (approx. 20%) [3-5]. However, it is 

likely that fALS and sALS share similar pathogenic pathways [6], because clinical 

symptoms of both forms are indistinguishable [6]. Potential causes such as gluta-

mate excitotoxicity, mitochondrial dysfunction, protein aggregation, and RNA mis-

processing [7-13] are believed to contribute to ALS pathogenesis. Additionally, 

chronic inflammatory processes and activation of the innate immune system are 

suggested to drive disease progression [14, 15]. 

As important key players of the innate immune response, inflammasomes have 

gained focus in recent years. These cytosolic multiprotein complexes consist of a 

cytoplasmic pattern recognition receptor (PRR), an adaptor protein (apoptosis-

associated speck-like protein, ASC) and inflammatory pro-caspase 1 (pro-Casp1) 

[16-18]. Recognition of damage-associated molecular patterns (DAMPs), including 

ATP, high-mobility group box 1 (HMGB1), S100 proteins, heat shock proteins and 

cytosolic DNA, released after cell/tissue damage, can activate the innate immune 

system [19]. The sensing of DAMPs leads to inflammasome assembly and subse-

quent activation of pro-Casp1 [17]. Subsequently, active caspase 1 (aCasp1) medi-

ates proteolytic maturation of interleukin 1β (IL1β) and interleukin 18 (IL18) [20, 21]. 

PRRs functioning as inflammasome sensors include the NOD-like receptors NLRP1, 

NLRP3 and NLRC4 (also known as IPAF, Card12 or CLAN) [22, 23] and the inter-

feron-inducible HIN-200 (hematopoietic interferon-inducible nuclear antigens with 

200 amino acid repeats) family member, absent in melanoma 2 (AIM2) [24]. The 

adaptor protein ASC contains a caspase activating and recruitment domain (CARD) 

and is required for most inflammasomes [17, 25]. Importantly, NLRP1 and NLRC4 

contain a CARD domain which allows them to recruit caspase 1 without the need of 

ASC [23, 26, 27]. Although it has been reported that ASC binding is essential for effi-

cient autoproteolysis of caspase 1 and cytokine release in CARD-containing 

inflammasomes, ASC-independent inflammasomes comprise of an unprocessed but 

active caspase 1 that can initiate rapid cell death [27, 28]. So far, inflammasome ac-

tivation has been demonstrated in various neurological diseases, including Alz-

heimer´s disease (AD) [29, 30], multiple sclerosis (MS) [31, 32] ischemic stroke [33-

35] and spinal cord injury (SCI) [36, 37]. A critical role for caspase 1 and IL1 in ALS 

pathogenesis has been demonstrated in animal and cell culture models [38-41]. Re-
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cently, we described increased expression of NLRP3, aCasp1, IL1 and IL18 in the 

lumbar spinal cord of SOD1(G93A) mice and in human sALS patients [14, 42].  

The neurocentric view of ALS is based on the hypothesis that primary damage oc-

curs in motoneurons and that muscle atrophy is solely the logical consequence of 

neuronal cell loss [43]. However, it is now evident that non-neuronal cells, such as 

microglia and astrocytes actively contribute to motoneuron degeneration [8, 43-46]. 

In this context, it was shown that skeletal muscle-restricted expression of mutant 

human SOD1 (hSOD1) causes motor neuron degeneration in an ALS mouse model 

[47], and recent findings suggest that skeletal muscle may actively participate in ALS 

pathogenesis. Indeed, gene expression changes, increased oxidative stress, im-

paired protein degradation, defective mitochondrial dynamics and disturbed calcium 

homeostasis in the skeletal muscle from ALS animal models and human ALS pa-

tients were detected early in disease progression [11, 48-54]. Furthermore, activation 

of inflammatory pathways in the context of tissue remodelling have been described 

in skeletal muscle of SOD1(G93A) rats and in human sALS patients [55, 56]. Finally, to 

provide an early diagnosis for efficient treatment, it is crucial to fully understand 

muscle pathology in ALS. To further elucidate the role of inflammation in skeletal 

muscle, we investigated the expression of NLRP1, NLRP3, NLRC4, AIM2 and relat-

ed inflammasome components and substrates, including ASC, aCasp1 and IL1, in 

pre-symptomatic and early-symptomatic SOD1(G93A) mice and in human sALS pa-

tients.  

 

Material & methods 

Animals 

All animal experiments were performed according to the guidelines of the Federation 

of European Laboratory Animal Science Associations and the animal research coun-

cil and legislation of the district government (North-Rhine Westphalia, Germany). 

High copy number B6/SJL-Tg (SOD1*G93A)1Gur/J mice [4] carrying a mutant 

hSOD1 gene, were obtained from Jackson Labs (Stock Number 002726, Bar Harbor, 

USA). The colony was maintained by crossing B6/SJL males harbouring the SOD1 

transgene with wild-type B6/SJL females. All animals were housed in a pathogen 
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free environment under a 12 hours light/12 hours dark cycle with free access to food 

and water. Pre-symptomatic male SOD1G93A mice (9 weeks old, SOD1 9W) as well 

as early symptomatic male SOD1G93A mice (14 weeks old, SOD1 14W) were used to 

monitor different phases of disease progression. The pre-symptomatic and sympto-

matic status was defined by analysing motor behaviour of SOD1 mice. Briefly, a neu-

rological score developed for the SOD1 mouse model (ALS therapy development 

institute, ALSTDI) and accelerating rotarod experiments were performed as de-

scribed previously [14, 42, 57]. Finally, 14W but not 9W old SOD1 mice exhibited 

significant motor deficits compared to age-matched male wild type (WT) litters. Gen-

otyping was performed from tail biopsies by a standardized PCR protocol using pri-

mers against hSOD1. Furthermore, the transgene copy number of SOD1 animals 

was determined to exclude artificial effects due to copy number loss. Briefly, ge-

nomic DNA was isolated from gastrocnemius muscle using a Tissue DNA Mini Kit 

(Peqlab, Germany). Real-time PCR was performed using specific primers against 

human SOD1 and murine IL2. Finally, CT values (Suppl. table S1) were calculated 

according to the protocol published by Alexander et al. 2004 [58]. Finally, a CT val-

ue between 6.6 and 7.2 is thought to result in a stable phenotype. 

 

Mouse tissue collection  

Under deep anaesthesia, mice were transcardially perfused with 4% paraformalde-

hyde in phosphate buffered saline (PBS) (for (immuno)histochemistry) or only with 

PBS (for protein analysis). The gastrocnemius muscle was dissected and removed. 

For (immuno-) histochemistry the tissue was post-fixed overnight, embedded in par-

affin and cut into 5µm cross-sections. For Western Blot analysis, muscle tissue was 

immediately frozen in liquid nitrogen. Tissues from WT 14W (n=4), SOD1 9W (n=4) 

and SOD1 14W (n=4) were examined by histology and immunohistochemistry.  

 

Human skeletal muscle biopsies 

Human biopsy samples (5µm paraffin cross sections and protein lysates in Triton 

lysis buffer) of skeletal muscle tissue from clinically confirmed, anonymized sALS 

patients and age-matched controls without neuropathological abnormalities were 
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obtained from the tissue collection of the Institute of Neuropathology, RWTH Aachen 

University Hospital, following the guidelines of the Ethics Committee of RWTH Aa-

chen University Hospital. Tissues from control and sALS patients were examined by 

histology and immunohistochemistry (n=3 controls, n=5 sALS patients) and Western 

Blot (n=3 controls, n=5 sALS patients). 

 

Hematoxylin/Eosin (HE) staining and Immunohistochemistry 

Standard H&E staining was performed to examine muscle structure and histology. 

Immunohistochemistry was carried out to localize PRRs expression using a standard 

protocol. Briefly, after deparaffinization, tissue sections were rehydrated followed by 

subsequent Heat-Induced Epitope Retrieval (HIER) in citrate buffer (pH 6) or Tris-

EDTA buffer (pH 9). After blocking of unspecific binding sites using 5% normal se-

rum, sections were incubated with the primary antibody (Suppl. table S3) overnight 

(ON) at 4°C. The following day, the respective biotinylated secondary antibody was 

added for 1 hour (h) at room temperature (RT). Immunoreaction was visualized by 

adding 3,3'-diaminobenzidine (DAB, DAKO, Hamburg, Germany). Nuclei counter-

staining was performed using hematoxylin. Negative controls, without primary anti-

bodies, were run simultaneously. Images were taken using the Nikon Eclipse 55i 

clinical microscope (Nikon, Düsseldorf, Germany) at 20x and 60x magnifications. 

To determine the immunoreactive area, colour deconvolution (H DAB) was applied to 

the RGB pictures (20x magnifications) using ImageJ software. The threshold of the 

DAB channel was set using an automated routine (Default Red) and the 

immunoreactive area of the region of interest (ROI) was calculated as percentage of 

pixels. Sections were viewed using a Leica DMI6000 B inverted microscope 

 

RNA isolation, reverse transcription (RT) and real-time PCR 

Gene expression was measured using real-time polymerase chain reaction technol-

ogy (BioRad, Germany), Sensi Mix™ Plus SYBR Kit (Bioline, UK), and a standard-

ized protocol as described previously. Briefly, isolation of total RNA was performed 

with TriFast (Peqlab, Germany). RNA samples (1µg) were digested with DNase1 
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(Roche, Germany) before RT to remove genomic DNA. Reverse transcription was 

performed using the Invitrogen M-MLV RT-kit and hexanucleotide primers. Samples 

were analysed in triplets using 96-well plates and the CFX Connect™ Real-Time PCR Detec-

tion System (BioRad, Germany). Relative quantification was performed calculating the 

ratio between the gene of interest (Suppl. table S2) and two reference genes 

(HSP90 and HPRT) using qBase plus software (qBase Biogazelle, Belgium). In each 

run, external standard curves were generated by several-fold dilutions of target 

genes. Finally, data were expressed as fold of WT 9W. Melting curves were routinely 

performed to determine the specificity of the PCR reaction. 

 

SDS-PAGE and Western blotting 

Frozen samples of mouse skeletal muscle were homogenized in Radio-

Immunoprecipitation Assay (RIPA) buffer consisting of 150 mM NaCl, 1% (v/v) 

Nonidet P-40 (Sigma, Igepal, CA), 0.1% SDS (sodium dodecyl sulphate), 0.5% sodi-

um deoxycholate, 50 mM Tris-HCl, pH 8.0 supplemented with 1x protease inhibitor 

cocktail (1xPi) (Complete Mini, Roche, Germany). Human biopsy material was ho-

mogenized in Triton lysis buffer (0.5% Triton X-100 in PBS, 0.5 mM PMSF and 1xPi). 

The Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, USA) was 

used according to the manufacturer´s protocol to determine protein concentrations 

which were measured in a plate reader (Tecan, Infinite 200, Männedorf, Switzer-

land). Protein samples were separated by 8-12% (v/v) discontinuous sodium dodecyl 

sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) (BioRad, München, Ger-

many) and transferred to a polyvinylidene difluoride (PVDF) membrane (Roche Di-

agnostics, Mannheim, Germany). After blocking with 5% skimmed milk (Carl Roth, 

Karlsruhe, Germany) solved in 0.05% Tween 20/Tris-buffered saline (TBS-T), for 1h 

at RT, incubation with the primary antibody (Suppl. table S3), diluted in blocking 

buffer, was performed ON at 4°C. The next day, incubation with the respective HRP-

conjugated secondary antibody was executed for 2h at RT. Visualization was per-

formed using enhanced chemiluminescence (ECL plus, Thermo Fisher Scientific, 

USA). Actin and GAPDH served as loading controls. Densitometric evaluation was 

executed using ImageJ software (Free Java software provided by the National Insti-

tutes of Health, Bethesda, Maryland, USA). 
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Statistical analysis 

Statistical analysis was carried out using SPSS 22 (Chicago, IL) and GraphPad 

Prism 5.0 (GraphPad Software, San Diego). Parametric statistics were applied with 

data that met Shapiro-Wilk criteria for normal distribution and passed Bartlett's or 

Levene’s test for equal variances. If necessary, Box-Cox transformation was per-

formed to allow parametric testing. Appropriate results were analysed by unpaired 

Student’s t-test for comparison of mean differences between two groups or one-way 

ANOVA for multiple comparisons. Data from mature IL1 protein were analysed by 

non-parametric Mann-Whitney U test. In case of the mRNA and immunohistochemis-

try data, two-way ANOVA was performed (with age and genotype as variables). 

Western Blot and immunohistochemistry for SOD1(G93A) was performed with WT 

(n=4) and SOD1 (n=4-5) animals for both time points (9W and 14W); and for tissues 

of control (n=3) and sALS (n=5) patients. Realtime experiments for WT and 

SOD1(G93A) were performed with n=6-7 per group. All data represent the means ± 

SEM. Differences were considered significant when p ≤ 0.05 and exact p-values are 

given in the result part. 

 

Results 

Histopathology of skeletal muscle from SOD1(G93A) mice and sALS patients 

In muscle tissue of 9W old SOD1 animals, morphology was comparable to WT (Fig-

ure 1 A, B). In early symptomatic, 14W old SOD1 mice, numerous partially atrophic 

or atrophic (Figure 1 C, arrows), angular or rounded muscle fibres were found, some 

of which showed non-subsarcolemmal myonuclei (Figure 1 C, asterisk). In addition, 

compensatory hypertrophic fibres were detected (Figure 1 C, arrowhead).  

Muscle fibres from human control subjects exhibited regular morphology (Figure 1 

D), whereas muscle tissues from sALS patients showed numerous groups of partially 

atrophic and atrophic muscle fibres (Figure 1 E-F, arrows), several hypertrophic 

muscle fibres (Figure 1 E, arrowhead), and central myonuclei (Figure 1 E, asterisk). 
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Elevated levels of aCasp1 and IL1β in skeletal muscle of SOD1(G93A) mice and sALS 

patients 

Inflammasome formation leads to auto-proteolysis and activation of pro-Casp1, and 

cleavage of pro-IL1β and -IL18 into their active forms [18]. Thus, expression levels of 

Casp1, IL1β and IL18 were analysed by Western blotting (Figure 2). Pro-Casp1 and 

pro-IL1 were expressed in mice and in human patients. Levels of pro-IL1 re-

mained unchanged in SOD1 animals (Figure 2 A-B, G, I) whereas expression of pro-

Casp1 was significantly upregulated in 14W (Figure 2 A-B, E *p=0.0407) but not in 

9W (Figure 2 A-C) old SOD1 mice. Significantly increased levels of aCasp1 (Figure 2 

A-B, D **p=0.0022 and Figure 2F *p=0.0103) and mature IL1 (Figure 2 H, 

*p=0.0159 and Figure 2 J, *p=0.0159) but not mature IL18 (Figure 2 L, N) were de-

tected in SOD1 animals of both ages. Levels of pro-IL18 remained unchanged in 

SOD1(G93A) mice (Figure 2 K, M). 

In human (Figure 2 O-Q), the 35-kDa subunit of pro-Casp1 (Figure 2 P **p=0.0095) 

and pro IL1 (Figure 2 Q **p=0.0089) were significantly elevated in sALS patients. 

However, aCasp1 and mature IL1 were not detected in human samples (Figure 2 

O). Neither pro- nor mature IL18 were detected in human samples (Figure 2 O).  

 

Protein and mRNA expression of inflammasome components in SOD1(G93A) mice 

Next, the expression and regulation of PRRs in the skeletal muscle of pre-

symptomatic and symptomatic SOD1(G93A) mice was examined (Figures 3 and 4). 

With respect to NLRP1, two immunoreactive bands were detected by Western blot-

ting: a product with a molecular mass of approx. 165 kDa, expected to be the canon-

ical isoform, and a smaller product of approx. 15 kDa, presumably a proteolytic 

product. Both proteins were found in WT and SOD1 mice (Figure 3 A and 4 A). A sig-

nificant downregulation of the 165-kDa canonical isoform was detected in 14W (Fig-

ure 4 A-B *p=0.0351) but not 9W old SOD1 mice (Figure 3 A-B). Expression levels of 

the 15-kDa product were constant at both ages and in both genotypes (Figures 3 A, 

C and 4 A, C). Three immunoreactive bands were detected for NLRC4: the full-size 

canonical 116-kDa and two smaller proteins, of approx. 40 kDa and 18 kDa (Figures 

3 A and 4 A). All three products were expressed at detectable levels in 14W old WT 
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and SOD1 animals (Figure 4A, D-F). Expression levels of all three NLRC4 products 

(Figure 4 A, 4 D *p=0.0469, 4 E **p=0.0045 and 4 F **p=0.0015) were significantly 

elevated in 14W old SOD1 mice. In 9W old animals, only the 40- and 18-kDa prod-

ucts of NLRC4 were detected (Figure 3 A, D-E), with a significant increase of the 18-

kDa product (Figure 3E **p=0.0040). Protein levels of NLRP3 were not significantly 

different between 9W (Figure 3 A, F) and 14W old WT and SOD1 animals (Figure 4 

A, G). One single band, with a molecular weight of approximately 50 kDa, was ob-

served for AIM2 in WT and SOD1 mice (Figures 3 A and 4 A). Compared to WT, 

AIM2 protein levels were significantly elevated in 14W (Figure 4 H *p=0.0188) but 

not 9W old SOD1 animals (Figure 3 G). Expression levels of ASC were very low in 

skeletal muscle of WT and SOD1 mice (Figures 3 A and 4 A). Beside the expected 

22-kDa ASC monomer, we detected a product of approximately 35 kDa, which is, to 

our knowledge, not reported in the literature. Quantification of the 22 and 35 kDa 

products revealed no significant differences between WT and SOD1 of 9W (Figure 3 

A, H) and 14W old mice (Figure 4 A, I).  

In a next step, we examined mRNA expression of PRRs, ASC and interleukins (Fig-

ure 5). Specific transcripts of all investigated PRRs (Figure 5 A-D) were detected in 

WT and SOD1 muscle. A significant interaction (age*genotype *p=0.0180) was de-

tected for NLRC4. Simple main effects analysis revealed a significant reduction of 

NLRC4 mRNA in 9W old SOD1 mice (Figure 5 B *p=0.0195). Expression levels of 

remaining PRRs were not altered (Figure 5 A, C-D). No interaction but an age de-

pendent downregulation of ASC (Figure 5 E **p=0.0021) and IL18 mRNA (Figure 5 F 

**p=0.0006) was found in 14W old SOD1 mice. Transcription levels of IL1 were not 

significantly altered (Figure 5 G).  

 

Subcellular localization of inflammasome components in the skeletal muscle of 

SOD1(G93A) mice 

Immunohistochemistry was performed to depict the cellular localization of 

inflammasome components (Figure 6). A weak intermyofibrillar staining pattern of 

NLRP1 was detected in WT and SOD1 animals, in which some fibres exhibited a 

stronger staining than others (Figure 6 A-C; inset, asterisks). Myonuclei were nega-

tive for NLRP1 (Figure 6 A-C). No visible differences were observed between WT 
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and 9W SOD1 (Figure 6 A-B). Staining intensity of NLRP1 appeared slightly weaker 

in 14W old SOD1 mice (Figure 6 C). However, the immunoreactive area was not sig-

nificantly different in SOD1 mice of both ages (Figure 6 D). NLRC4 displayed a dif-

fuse intermyofibrillar (Figure 6 E-G; inset, asterisks) and subsarcolemmal (Figure 6 

G; inset, white arrowhead) expression pattern in both genotypes. Interestingly, a 

prominent immunoreactivity of NLRC4 was observed within the 

myonucleus/myonuclear domain (Figure 6 F-G, inset, black arrowhead). Further-

more, a significant interaction (age*genotype **p=0.0051) was detected. Analysis of 

simple main effects revealed that age significantly affects NLRC4 immunoreactivity 

(Figure 6 H **p=0.0066). As expected, NLRP3 immunoreactivity was faint in WT and 

SOD1 muscle (Figure 6 I-K). However, some muscle fibres displayed a diffuse 

intermyofibrillar and myonuclear NLRP3 staining pattern (Figure 6 I-K; inset, aster-

isks and black arrowheads, respectively). Importantly, isolated cells between muscle 

fibres, most likely macrophages, exhibited a strong NLRP3 immunoreactivity (Figure 

6 K, black arrowhead). Nevertheless, no differences in NLRP3 immunoreactivity 

were observed (Figure 6 L). AIM2 was mainly localized within the 

myonucleus/myonuclear domain (Figure 6 M-O; inset, black arrowheads) and less 

expressed in the intermyofibrillar compartment (Figure 6 M-O; inset, asterisks). The 

immunoreactive area was not significantly different in SOD1 mice (Figure 6 P). ASC 

displayed a strong subsarcolemmal staining pattern in single muscle fibres of WT 

and SOD1 animals (Figure 6 Q-S; inset, white arrowheads). In 14W SOD1, ASC 

immunoreactivity was detected near the plasma membrane of isolated muscle fibres 

(Figure 6 S; inset, white arrowhead), whereas most fibres rarely gave any positive 

signal (Figure 6 Q-S, black asterisks). 

 

Elevated levels of PRRs and ASC in muscle biopsies from sALS patients 

Western Blot analysis was performed with control (n=3) and sALS tissue (n=5). Both, 

the full-size 165-kDa NLRP1 and the smaller 15-kDa fragment were detected in con-

trol and sALS patients (Figure 7 A). No significant differences in the expression level 

of both protein variants were observed (Figure 7 B-C). Consistent with data from the 

mouse model, the expression level of NLRC4 was increased in sALS patients (Fig-

ure 7 A, D-E). Statistical differences were detected for the 18-kDa (Figure 7 E 
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*p=0.0307) but not for the 116-kDa, canonical isoform (Figure 7 D p=0.0956). Due to 

no detectable expression of the 40-kDa isoform in controls, a reliable quantification 

was not feasible (Figure 7 A). Protein levels of the 118-kDa canonical NLRP3 isoform 

were below the detection limit in control and sALS patients (Figure 7 A). Expression 

of the 50-kDa AIM2 protein was similar in control and sALS patients (Figure 7 A, F). 

The 22-kDa ASC monomer was not detected in any of the samples (Figure 6 A). 

However, the 35-kDa product was expressed but not statistically different in sALS 

patients (Figure 7 A, G p=0.5233).  

Immunohistochemistry of NLRP1 revealed intermyofibrillar localization (Figure 8 A-C; 

inset, asterisks). In sALS patients, isolated atrophic fibres displayed a stronger signal 

than normal sized and hypertrophic muscle cells (Figure 8 B-C; inset, asterisks). 

However, the immunoreactive area was not significantly different in sALS patients 

(Figure 8 D). Expression of NLRC4 was mainly localized within/around myonuclei 

(Figure 8 E-G; inset, black arrowheads) and to a lesser extent in the intermyofibrillar 

compartment (Figure 8 F-G; inset, asterisks). A prominent staining of atrophic muscle 

fibres was detected in sALS samples (Figure 8 F-G). Finally, the immunoreactive 

area was significantly increased in sALS patients (Figure 8 H). Immunostaining of 

NLRP3 (Figure 8 I-K) and AIM2 (Figure 8 M-O) was faint and localized in the 

intermyofibrillar compartment (Figure 8I-O; inset, asterisks) and to a lesser extent in 

the nucleoplasm (Figure 8 I-O; inset, black arrowheads) of control and sALS pa-

tients. We observed no significant differences between control and sALS in either the 

NLRP3 (Figure 8 L) or AIM2 staining (Figure 8 P). A weak signal of ASC was detect-

ed in intermyofibrillar compartment (Figure 8 Q-S; inset, asterisks) of control and 

sALS subjects. However, evaluation of the immunoreactive area did not reveal a sta-

tistical difference (Figure 8 T).  

Importantly, some cells (most likely macrophages and/or endothelial cells) located 

between muscle fibres exhibited a strong immunoreactivity for NLRC4, NLRP3, AIM2 

and ASC (Figure 8 E-S, black arrows).  
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Discussion 

Activation of the innate immune system is a known mechanism in neurodegeneration 

and activation of inflammasomes has been demonstrated in various neurological 

diseases [59-61]. We recently demonstrated increased expression of NLRP3, 

aCasp1 and IL1 in the spinal cord of SOD1(G93A) mice and sALS patients [14]. Fur-

thermore, blocking of inflammasome signalling exerts neuroprotective effects in SCI 

[36, 37], ischemic stroke [33, 62], MS [63], AD [64] and ALS [39]. However, expres-

sion of inflammasomes in normal and denervated skeletal muscle in ALS is largely 

unknown. Thus, we aimed to determine the expression of the PRRs NLRP1, NLRP3, 

NLRC4, AIM2 and other inflammasome components, such as ASC, caspase 1 and 

IL1/18 in the SOD1(G93A) mouse model and in sALS patients. Elevated levels of 

caspase 1 and IL1 in SOD1 mice and sALS patients indicate inflammasome activa-

tion in the denervated skeletal muscle. Moreover, increased levels of these proteins 

in the skeletal muscle of pre-symptomatic SOD1 animals suggest an early activation 

of innate immunity in ALS pathogenesis. NLRP3 and ASC were expressed at very 

low, but detectable levels. However, no significant differences in protein expression 

were detected. NLRP1 was downregulated in SOD1(G93A) mice but not in human 

sALS patients. Protein expression of NLRC4 and AIM2 was increased in symptomat-

ic animals, whereas only NLRC4 was significantly up-regulated in sALS patients. 

Finally, despite a significant decrease of ASC and IL18 mRNA in 14W old SOD1 an-

imals, no changes in gene expression were detected. 

Skeletal muscle is increasingly considered as an active player in ALS pathogenesis 

by activating retrograde signalling mechanisms, contributing to motoneuron death 

[65-67]. Thus, early abnormalities in skeletal muscle metabolism may be a primary 

pathophysiological event in ALS [11, 48, 54, 68-71]. Recent findings, that skeletal 

muscle fibres express different PRRs, including diverse TLRs and NLRs point out 

the possibility of a response to environmental factors, including pathogens, inflam-

matory cytokines and growth factors [72-75]. Caspase 1 and IL1 have been shown 

to play a crucial role in disease progression in ALS mice and deficiency in either 

casp1 or IL1, or treatment with the IL1R-antagonist Anakinra reduced 

neuroinflammation and prolonged the live span of the animals [38-40, 76]. IL1 can 

be released by skeletal muscle cells [77] and/or by macrophages, which infiltrate the 
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diseased skeletal muscle [78]. Elevated level of IL1β and IL18 seem to be involved in 

the initiation and progression of idiopathic inflammatory myopathies, including 

dermatomyositis, polymyositis and inclusion body myositis [79, 80]. Furthermore, 

primary skeletal muscle cells release IL1β after treatment with lipopolysaccharide 

(LPS) and ATP, suggesting that skeletal muscle may actively participate in 

inflammasome formation [81]. During muscle regeneration, increased IL1 is associ-

ated with an accumulation of activated macrophages and impaired regeneration [78]. 

Our observation of increased mature IL1 is in accordance with a recent study on 

Schwann cell and macrophage mediated inflammation in the skeletal muscle, per-

formed in SOD1(G93A) transgenic rats [56]. Additionally, we detected elevated levels 

of aCasp1, the rate-limiting enzyme in cytokine maturation, in 9W and 14W old 

SOD1(G93A) mice. These findings are in accordance with a previous study [82], 

demonstrating increased caspase 1 and 3 activation in the soleus muscle of end-

stage but not pre-symptomatic SOD1(G93A) mice. However, the soleus muscle is 

mainly composed of slow twitch (Type I) fibres and is therefore later affected in dis-

ease progression than the gastrocnemius muscle (predominately type II fast twitch 

fibres) [68]. On the transcriptional level we detected a significant reduction of IL18 

mRNA in 14W old SOD1 mice, whereas transcription levels of IL1 remained un-

changed. Regulation of IL18 and IL1 may occur on the transcriptional and/or post-

translational level. We observed constitutive expression of mRNA and protein of ILs 

precursors in WT and SOD1 animals. Thus, increased levels of mature IL1 may be 

rather derived by posttranslational modification (e.g. increased caspase 1 activity) 

than by enhanced transcription. So far, we do not have a satisfactory explanation for 

the decrease in IL18 mRNA expression. However, distinct regulation of IL18 and 

IL1 on the transcriptional level, processing and secretion has been described [83]. 

Given that IL18 has been shown to affect lipid metabolism in skeletal muscle [84-86], 

decreased levels of IL18 may negatively impact muscle physiology. Thus, reduced 

IL18 level in denervated skeletal muscle may further contribute to muscle wasting in 

SOD1 mice. Despite a significant up-regulation of the pro-Casp1 and IL1β, the ma-

ture proteins, were not detected in human samples. Furthermore, protein expression 

of IL18 was under the detection limit. So far, we don’t have a satisfactory explana-

tion, but critical points might be low antibody specificity to the human mature proteins 

and/or short half-life of the peptides[87]. It has been proposed that NLRP3 may ex-
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ert a key role in triggering insulin resistance in obese patients, sarcopenia in aging 

subjects [88, 89], dysferlin-related dystrophies [81] and sepsis-induced muscle atro-

phy [90]. Furthermore, it has been shown that the gastrocnemius muscle is capable 

of up-regulating NLRP3 and IL1 mRNA in response to sepsis [90]. Although protein 

expression was low, we detected NLRP3 positive cells in the skeletal muscle of WT 

and SOD1mice. However, mRNA and protein expression of NLRP3 were not signifi-

cantly different in SOD1 animals. In human, NLRP3 protein expression was below 

the detection limit of Western Blot analysis, but isolated NLRP3 positive cells were 

found in the connective tissue of the skeletal muscle from murine and human sam-

ples. These cells are most likely inflammatory cells, such as macrophages, 

phagocyting and/or repairing degenerating muscle fibres and NMJs [55, 56]. Our 

data are in accordance with other studies demonstrating low expression levels of 

NLRP3 in normal skeletal muscle [81]. Increased levels of IL1β and casp1 but weak 

expression of NLRP3 indicates that rather different PRRs (e.g. NLRP1, NLRC4 or 

AIM2) may be activated in the skeletal muscle. In 2009, AIM2 was identified a sensor 

for cytoplasmic DNA, leading to activation of caspase-1 [24, 91-93]. We detected 

increased protein expression of AIM2 in 14W old SOD1 mice but not in sALS pa-

tients. However, expression levels of AIM2 mRNA were not significantly altered in 

SOD1 mice. These findings suggest a regulation of AIM2 on the posttranslational 

level by mechanisms, such as impaired autophagy [54, 94, 95]. Although known to 

be a predominantly cytosolic localized protein [91], we observed AIM2 

immunoreactivity in the nucleoplasm and in cells others than muscle fibres (most 

likely macrophages). However, our findings are in accordance with recent studies on 

the role of AIM2 in DNA damage after radiation [96] and neuronal pyroptosis after 

infection and traumatic brain injury [97].  

An extensive diversification of NLRP1 between mouse and human resulted in three 

paralogues (NLRP1 a,b,c with a similar kDa size) in mice and only one known 

paralogue (NLRP1) in human. Furthermore, several splice variants have been doc-

umented for NLRP1b [98]. NLRP1a and NLRP1b are translated into proteins with a 

similar molecular weight, whereas NLRP1c is predicted to be a pseudogene. The 

NLRP1c paralogue does not encode for a full-length inflammasome sensor, but it is 

truncated after exon 8 [98]. The antibody used in the present study detects endoge-

nous level of total NLRP1 protein. Specific antibodies, only detecting one paralogue, 
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were not available at the time of this study. We detected two immunoreactive NLRP1 

products in mouse and human samples. The 165-kDa protein (NLRP1a and/or b) 

was significantly downregulated in SOD1(G93A) mice, whereas expression of the 15-

kDa variant was unchanged. No isoform with a size of 15-kDa is known, but there 

are reasonable grounds to believe that it is the result of a proteolytic event. However, 

nonspecific reactivity of the used antibody cannot be ruled out. Because the NLRP1b 

locus is most frequently associated with inflammasome formation, we have analysed 

mRNA expression of this specific isoform in SOD1(G93A) mice [99]. In addition, it is not 

clear what stimuli might specifically activate NLRP1a. Nevertheless, a previous study 

identified a missense gain-of-function mutation in NLRP1a (Q593P) that exhibits 

spontaneous inflammasome activation [100]. However, no changes on the mRNA 

level of NLRP1b were observed. Western Blot analysis of NLRP1 in human control 

and sALS patients was similar but without significant differences in the expression 

level. In addition to sensing microbial stimuli, NLRP1 has been suggested to detect 

metabolic disturbances [101-103]. Autocatalytic cleavage within the FIIND domain 

(function to find) of NLRP1 occurs constitutively, prior to activation signals, and is 

required for inflammasome activity [104-106]. Furthermore, it has been published 

that proteolytic processing of human NLRP1 and mouse NLRP1b results in multiple 

C-terminally truncated variants [105, 107], including products with the size of approx-

imately 15 kDa [108, 109]. Immunohistochemistry revealed an intermyofibrillar locali-

zation of NLRP1 in isolated muscle fibres. This staining pattern was found in control 

and ALS tissue of mice and human, probably reflecting differences in protein synthe-

sis in different fibre types [110]. However, no differences in the immunoreactive area 

were detected for NLRP1. In case of NLRC4, we detected a significant upregulation 

of NLRC4 in symptomatic SOD1(G93A) mice and in sALS patients. NLRC4 is mainly 

regarded as a sensor of microbial flagellins [111, 112], but NLRC4 activation was 

also reported in mouse models for MS [113], acute brain injury [114], and alcohol-

induced liver injury [115], suggesting that other, so far unknown, host molecules can 

activate the NLRC4 inflammasome. Four different isoforms (isoform 1: 116 kDa, iso-

form 2: 40 kDa, isoform 4: 18 kDa and isoform 4: 10kDa), produced by alternative 

splicing, have been predicted in human [116] (UniProtKB-Q9NPP4 

(NLRC4_HUMAN)). In mice, only the canonical 116-kDa isoform 1 has been de-

scribed so far (UniProtKB - Q3UP24 (NLRC4_MOUSE)). We detected the expres-

sion of the 116-kDa, 40- and 18-kDa NLRC4 isoforms (isoform 1-3) in SOD1(G93A) 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

mice and sALS patients. No further information is currently available about the func-

tional role of the small non-canonical isoforms (isoform 2-4) and proteolytic pro-

cessing of NLRC4. However, nonspecific reactivity of the used antibody cannot be 

ruled out. In a recent study Schieber and co-workers demonstrated that gut coloniza-

tion of mice by a strain of Escherichia coli prevented Salmonella induced muscle 

wasting [117]. Using knockout mice for Casp1, NLRC4, IL1 and IL18 they have fur-

ther confirmed that this effect was NLRC4 and IL18 dependent. Additionally, in-

creased IL18 levels correlated with elevated serum IGF1 and reduced muscle wast-

ing in Salmonella infected mice. Together, these data suggest a possible protective 

effect of NLRC4 activation and IL18 release on skeletal muscle metabolism.  

The adaptor protein ASC was expressed at very low levels and co-localization with 

skeletal muscle fibres was weak in murine and human samples. Furthermore, we 

detected a strong immunoreactive band, with a size of about 35 kDa in murine and 

human samples. Although no isoform with the indicated size has been described so 

far, a recent study on inflammasome activation in prostate cancer detected a product 

about 30 kDa for ASC in different cancer cell lines [118]. However, nonspecific reac-

tivity of the antibody cannot be ruled out. ASC immunoreactivity was most prominent 

near the plasma membrane of some muscle fibres and in cells other than muscle 

fibres. Macrophages are located within the connective tissue and known to express 

most inflammasome components, including ASC [119].  

Although responsible for muscle regeneration after injury, chronic activation of mac-

rophages may exacerbate secondary damage to the denervated skeletal muscle.  

Increased infiltration of immune and inflammatory cells (e.g. macrophages, neutro-

phils, lymphocytes etc.) in the skeletal muscle, early in disease progression, has 

been documented in ALS animal models [56, 120, 121] and in a subset of sALS pa-

tients [122, 123]. Importantly, increased expression levels of inflammasome compo-

nents might be, at least in part, due to the infiltration of immunocompetent cells into 

the muscle tissue due to muscle fibre necrosis [123]. Additionally, other cell types, 

including fibroblasts, Schwann cells, endothelial cells, and satellite cells may also 

express and upregulate different NLRs. However, these cell types account for only a 

tiny proportion in the analysed samples and our data most likely reflect changes in 

skeletal muscle fibres.  
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Importantly, since mRNA expression of PPRs and IL1was hardly unchanged in 9 

and 14W old SOD1 mice, the observed changes appear to be the results of post-

transcriptional and/or posttranslational events [124-128]. However, artefacts due to 

hSOD1 copy number loss can be largely excluded since CT values were within the 

predicted range [58]. Thus, future studies on mouse and human sALS skeletal mus-

cle samples are needed to clarify these points. 

 

Limitations and conclusion 

We are aware that the present study has some limitations. With the background of a 

heterogeneous and multifactorial disease, the small number of samples limits the 

ability to generalize our data. However, major advantages of our study are the de-

tailed expression analysis of major inflammasome components in normal and 

denervated skeletal muscle from a genetic mouse model for ALS and sALS patients. 

To our knowledge, this is the first study investigating protein expression of NLRP1, 

NLRP3, NLRC4 and AIM2 in normal and denervated skeletal muscle. Whether this 

expression pattern is specific for ALS or might be similar in other neurogenic muscle 

atrophies, due to sensorimotor neuropathy, remains to be investigated. Our results 

from the SOD1(G93A) mouse model suggest that activation of the innate immune sys-

tem in denervated skeletal muscle is an early event and may actively contribute to 

muscle wasting and disease progression. Especially NLRC4 protein expression was 

significantly changed in the mouse model and in sALS patients, suggesting a possi-

ble role in skeletal muscle pathology. Although the relative contribution of 

inflammasome activation merits further investigation, our findings may contribute to a 

better understanding how inflammatory processes may contribute to denervation 

processes and muscle atrophy in ALS. 
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Figure legends 

Figure 1 Histopathology of skeletal muscle from SOD1(G93A) mice and human pa-

tients 

(A-F) Representative H&E staining of skeletal muscle tissue from SOD1(G93A) mice 

(A-C) and human control and sALS patients (D-F). No obvious abnormalities in mus-

cle morphology were observed in WT (A) and 9W old SOD1 mice (B), as well as in 

the human control subject (D). However, in 14W old SOD1 animals (C) and in sALS 

patients (E-F), typical features of neurogenic atrophy, including muscle fibre atrophy 

(C, E-F; inset, black arrow), compensatory hypertrophy (C, E; inset, arrowhead) and 

central myonuclei were detected (C, E; asterisk).  

Figure 2 Increased protein levels of aCasp 1 and IL1 in SOD1(G93A) mice and hu-

man patients 

(A-Q) Western Blot analysis was performed using antibodies against caspase 1, 

IL1 and IL18. Pro-Casp1 (30-46 kDa) and pro-IL1 (32 kDa) were expressed in 9W 

(A) and 14W (B) old WT and SOD1 mice. Pro-Casp1 (*p= 0.0407), but not pro-IL1 

was significantly upregulated in 14W old SOD1 animals (C-J). Active caspase 1 

(p20) and mature IL1(17 kDa) were significantly increased in 9W (**p=0.0022 and 

*p=0.0103, respectively) and 14W (*p=0.0159 and *p=0.0159, respectively) old 

SOD1 mice (C-J) Pro- and mature IL18 were not significantly altered in SOD1 mice 

(K-N). Although the active peptides were not detected in human samples, a signifi-

cant increase of pro-casp1 (intermediate p35-kDA fragment) and pro-IL1 was no-

ticed in sALS (O, P-Q; **p=0.0095 and **p=0.0089, respectively).  Data represent 

means ± SEM from n=4-5. Student’s t-test: *p<0.05 and **p<0.01 vs. WT/Control or 

Mann-Whitney U test (mature IL1): *p<0.05 vs WT/Control. 

Figure 3 Expression of PRRs in 9W old WT and pre-symptomatic SOD1(G93A) mice 

(A-H) Western Blot data of PRRs and ASC in the skeletal muscle from pre-

symptomatic SOD1 animals. Two products of NLRP1, the canonical isoform with 165 

kDa and a smaller 15-kDa fragment were expressed, but not significantly altered in 

SOD1 mice (A-C). Only the 18- and 40-kDa products, but not the canonical 116-kDa 

isoform of NLRC4 were detected by Western Blot in WT and SOD1 animals (A, D-
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E). However, protein levels of the 18-kDa product were significantly increased (E; 

**p=0.0040). Expression of NLRP3 and AIM2 were not significantly different (A, F-

G), Instead of the expected 22-kDa ASC monomer, an immunoreactive band of 

approx. 35 kDa was detected (H). Data represent means ± SEM from n=4-5. Stu-

dent’s t-test: **p<0.01 vs. WT. 

Figure 4 Expression of PRRs in 14W old WT and symptomatic SOD1(G93A) mice 

(A-I) Western Blot data of PRRs and ASC in the skeletal muscle from symptomatic 

SOD1 animals. The 165-kDa isoform and the 15-kDa fragment of NLRP1 were ex-

pressed in WT and SOD1 animals (A-C). A significant down-regulation of the canon-

ical NLRP1 was detected in SOD1 mice (B, *p=0.0351). The 116-kDa canonical, and 

the two smaller products of NLRC4 were significantly increased in both genotypes 

(A, D-F *p=0.0469, **p=0.0045 and **p=0.0015, respectively). Expression levels of 

AIM2 (A, H; *p=0.0118) but not NLRP3 (A, G) were significantly increased in SOD1 

animals. Expression levels of the 22- and 35-kDa ASC product were not significantly 

different (A, I). Data represent means ± SEM from n=4-5. Student’s t-test: *p<0.05, 

**p<0.01 vs. WT. 

Figure 5 Transcription levels of PRRs, ASC and interleukins in WT and SOD1(G93A) 

mice 

(A-G) Realtime PCR analysis of inflammasome components in skeletal muscle of 

9W and 14W old WT and SOD1 mice. A significant interaction was observed for 

NLRC4 (B; age*genotype p=0.0180, F=6.44, Df=24). Pairwise comparison revealed 

significant reduction of NLRC4 mRNA in 9W (*p=0.0398) but not 14W old SOD1 

mice. No differences in mRNA expression were detected for the remaining PRRs (A, 

C-D). Two-way ANOVA indicated that genotype significantly effects the overall ASC 

(p=0.0007; F=15.36, Df=23) and IL18 (p=0.0005; F=16.11, Df=23) expression inde-

pendent of age. However, a significant reduction of mRNA was observed for ASC (E, 

**p=0.0021) and for IL18 (F, ***p=0.0006) in 14W old SOD1 animals. No changes in 

IL1 mRNA levels were detected (G). Data represent means ± SEM from n=6-7. 

*p<0.05 **p<0.01 and ***p<0.001 by Bonferroni post-hoc tests following two-way 

ANOVA. 
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Figure 6 Tissue expression of PRRs in WT SOD1(G93A) mice  

(A-T) Representative immunohistochemistry of NLRP1, NLRC4, NLRP3, AIM2 and 

ASC from WT and SOD1 mice. (A-C) Intermyofibrillar staining of NLRP1 was detect-

ed in WT (A) and SOD1 mice (B-C). Some fibres were intensively and other weakly 

stained for NLRP1 (A-C; inset, asterisk). No significant differences in the 

immunoreactive area were detected (D). NLRC4 was localized in the intermyofibrillar 

(E-G; inset, asterisks) and subsarcolemmal compartment (G; inset, white arrow-

head). Additionally, NLRC4 immunoreactivity was detected near the nuclear rim of 9 

and 14W old SOD1 mice (F-G; inset, black arrowheads). A significant interaction 

was observed for NLRC4 (H; age*genotype p=0.0051, F=11.69, Df=12). Pairwise 

comparison revealed significant increase of NLRC4 immunoreactivity in 14W old 

SOD1 mice (**p=0.0066). The NLRP3 signal was weak and mainly localized to the 

nuclear rim in WT (I) and SOD1 animals (J-K; inset, arrowheads). Furthermore, oth-

er cells than muscle fibres, most likely macrophages, were NLRP3 positive (K; inset, 

arrow). No significant difference in the immunoreative area was detected (L). Ex-

pression of AIM2 was localized to myonuclei (M-O; inset, arrowheads) and the 

interfibrillar compartment (M-O; inset, asterisks). Immunoreactivity of AIM2 was not 

significantly different in SOD1 mice (P). Although the overall signal of ASC was weak 

(Q-S), a subsarcolemmal (Q-S; inset, white arrowheads) and intermyofibrillar stain-

ing was detected (M-O; inset, asterisks). Single muscle fibres in 14W old SOD1 mice 

displayed strong ASC immunoreactivity (O). However, the immunoreactive area was 

similar in WT and SOD1 animals (T). Data represent means ± SEM from n=4. Two-

way ANOVA followed by Bonferroni’s post hoc analysis: **p<0.01 vs. WT. 

Figure 7 Increased expression levels of PRRs in the skeletal muscle of sALS pa-

tients  

(A-G) Western Blot data of different PRRs and ASC in the skeletal muscle from con-

trol (C) and sALS patients. Expression of the canonical isoform of NLRP1 (165 kDa) 

and the 15-kDa fragment was not significantly different in sALS patients (A-C). The 

canonical 116-kDa and the smaller 40- and 18-kDa products of NLRC4 were detect-

ed, but only levels of the 18-kDa isoform were significantly increased in sALS pa-

tients. (A, D-E; *p=0.0307). AIM2 expression was not significantly altered in sALS (A, 

F). A 35-kDa product, but not the 22-kDa ASC monomer was expressed at similar 
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levels in control and sALS subjects. (A, G). No detectable signal was found for 

NLRP3 and IL18 (A). Data represent means ± SEM from n=3-5. Student’s t-test: 

*p<0.05, **p<0.01 vs. Control.  

 

Figure 8 Subcellular localization of PRRs in human patients 

(A-T) Representative Immunohistochemistry of NLRP1, NLRC4, NLRP3, AIM2 and 

ASC in muscle biopsies from control and sALS patients. NLRP1 was localized in the 

intermyofibrillar compartment and isolated muscle fibres exhibit a stronger signal 

than others (A-C; inset, asterisks). No significant differences in the immunoreactive 

area were detected (D). NLRC4 immunoreactivity was detected in the nucleoplasm 

(E-G, inset, black arrowheads) and to a lesser extent in intermyofibrillar compartment 

(F-G, inset, asterisks). NLRC4 negative nuclei were detected in control muscle fibres 

(E; inset, black arrowhead), whereas myonuclei from atrophic fibres were NLRC4 

positive (F-G; inset, black arrowheads). NLRC4 immunoreactivity was significantly 

increased in sALS patients (H, *p=0.0231). A faint cytoplasmic (I-K; inset, asterisks) 

and nuclear (J-K; inset, black arrowhead) immunoreactivity for NLRP3 was seen in 

control and sALS. Isolated cells between muscle fibres were also found NLRP3 posi-

tive (J; inset, arrow). NLRP3 immunoreactivity was similar in control and sALS pa-

tients (L). AIM2 (M-O) and ASC (Q-S) were expressed in the intermyofibrillar com-

partment (M-S; inset, asterisks) and single myonuclei were positive for AIM2 (N-O; 

inset, black arrowhead). Furthermore, cells located between muscle fibres of control 

and sALS were found positive for AIM2 (N; inset, arrow) and ASC (Q-S; inset, ar-

row). These cells most likely represent macrophages. Immunoreactivity of AIM2 (P) 

and ASC (T) was not significantly altered in sALS patents. Data represent means ± 

SEM from n=3-5. Student’s t-test: **p<0.01 vs. Control. 
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