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Abstract. In this paper we propose an algorithm for automatic tracking
of individual intermediate filaments (IF), which form a highly branched
network inside living cells. The algorithm is based on Stretching Open
Active Contours (SOAC) combined with a novel method for processing
the snake’s open ends. The main element of our approach (Endpoint-
Controlled Active Contours) is a newly introduced potential function,
which is included into the snake’s energy term forcing its end-points
to coincide with the filament’s end- or junction-points. The comparison
of our method with similar tracking algorithms for the problem of IF
tracking shows a significantly improved accuracy of the overall tracking.

Keywords: Active contour model · Snakes · Point tracking ·
Intermediate filaments · Cytoskeleton · Confocal microscopy

1 Introduction

Intermediate filaments are major cytoskeletal components of vertebrate cells.
Their molecular composition varies depending on cell type, cellular function
and the microenvironment. Typically, intermediate filaments form a filamentous
network within the cell and are mechanically connected to neighbor cells. This
network is a main contributor to the biomechanical properties of cells and tis-
sues supporting processes such as wound healing and tumor cell invasion [7,9].
The topology of intermediate filament networks is highly different depending on
the cell type, filament type and physiological conditions. The organization and
dynamics of intermediate filaments can be best studied in living cells produc-
ing fluorescent intermediate filament protein reporters. However, an approach to
classify and distinguish between different types of filament topologies is missing.
A quantitative description of network’s characteristics using manual labeling
of the filament’s trajectories would be extremely time-consuming. Automated
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filament tracking or segmentation algorithms have been successfully proposed
for individual actin filaments which were well separated by background [8,10].
The task of filament tracking within their highly branched network, in contrast,
leads to additional complications due to a high spatio-temporal variability in the
contrast of filaments and the risk of confusion with neighboring filaments. As
an experimental evaluation shows (see Sect. 4), SOAC-based algorithms tend to
overgrow or switch to the neighboring filaments.

In this paper, we introduce a new potential function to the snake’s energy
term. This potential function enables better control over the snake’s endpoints
preventing the issues with SOAC-based methods. After providing a scheme of the
overall tracking procedure in the following subsection and describing the image
processing steps in Sect. 2 we present our novel snake-based approach in Sect. 3.
An evaluation on microscopic image data and a comparison to other tracking
approaches is presented in Sect. 4 before concluding in Sect. 5.

Fig. 1. Block-diagram of the overall
tracking algorithm

Overall Tracking Algorithm. Our pro-
cedure for tracking of individual cytoskele-
tal filaments consists of two main steps: (1)
fitting the filament’s position to the image
of the current frame and (2) transferring
the filament’s curve to the next frame in
the sequence. For the second step, we use
pyramidal Lucas-Kanade optical flow [2].
It allows to roughly estimate the filament’s
position in case of large deformations. Map-
ping errors are eliminated further on by the repetition of the snakes-based fitting
step. In detail, the tracking algorithm consists of the following single steps (see
Fig. 1):

(A) Initialization: The filament’s position is initialized on the first frame (man-
ually by the user or using an additional segmentation procedure [12]). The
endpoint control term is initialized as described in Sect. 3.2;

(B) Image processing of the current frame according to the workflow described
in Sect. 2;

(C) Gradient vector flow (GVF): It is computed from the enhanced image (step
(B), for details see step 2 in Sect. 2);

(D) Endpoint Controlled Snake Evolution: The snake is fitted to the current
image based on the GVF obtained in (C) using a stretching [8] and an
endpoint control term as described in Sect. 3.2;

(E) Conditional Statement : If the current image is the last in the sequence,
terminate the algorithm, else go to the next step;

(F) Pyramidal optical flow : It is calculated for the current image with respect
to the next one in the time-sequence as described in [2];

(G) Select the next image of the sequence, transfer the snake to it based on the
calculated optical flow field. Update the endpoint control term as described
in Sect. 3.2 and repeat the whole procedure starting from step (B).
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Fig. 2. The main image processing steps: (a) original image; (b) Frangi filter and
gamma correction; (c) Thresholding using Otsu; (d) Skeletonization and junction- or
endpoints detection (Color figure online)

2 Image Processing

Image processing of confocal microscopy videos showing intermediate filament
networks should suppress noise, homogenize the highly variable intensity distri-
bution along the filament’s length and enhance the contrast of a filament. Inter-
mediate filaments have a tubular network structure similar to a blood vessel
tree but with a higher branchness and a lower variability in radius. In [5] it was
shown that image processing algorithms used for vessels’ contrast enhancement
and segmentation can be adapted to confocal images of intermediate filaments.
For every image of the sequence of N confocal images, we apply the following
image processing steps based on the workflow proposed by [1]:

(1) Firstly, the original grayscale image (see Fig. 2(a)) is inverted and smoothed
with a Gaussian kernel (σ ≈ 0.5); the contrast of the image is enhanced with
the CLAHE algorithm [1];

(2) the Hessian-based ridge enhancement filter by Frangi et al. [3] is applied in
order to enhance tubular structures and suppress blobs and image noise. The
contrast of the filtered image is further enhanced using gamma correction
(with γ ≈ 0.5) (cf., Fig. 2(b) for an example).

(3) Otsu’s threshold TOtsu is computed [1] and the image I(x, y) is transformed
using Otsu as an upper threshold: Inew(x, y) = TOtsu, for I(x, y) ≥ TOtsu.
The intensity range of the image is rescaled to [0, 1] (see Fig. 2(c));

(4) A threshold value (≈0.25) is fixed in order to obtain a binary image;
(5) Noisy components of the binary image (with small area) are removed and a

skeleton of the binary image is computed (Fig. 2(d)). Finally, the hit-and-
miss morphological transform is used to detect branching/endpoints of the
binary skeleton (see red points in Fig. 2(d)).
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Fig. 3. Penalty function Ctotal and it’s terms C1, C2 and C3 computed for every point
of the skeleton and encoded in color from blue for small values to red for large values.
The green triangle represents pt−1 and the magenta one the bifurcation point pb cor-
responding to pt. Note that without C2(p) pt might be wrongly selected as the next
bifurcation below the green triangle. (Color figure online)

3 Filament Tracking Algorithm

3.1 Active Contour Models: Snakes

Let’s denote by xt(s) = [x(s), y(s)], s ∈ [0, 1] an open ended curve representing
the filament’s position on the image It, t = 0, N − 1. We are fitting this curve to
the current image by minimizing the following so-called “energy” functional [6]:

E =
∫ 1

0

1
2
(
α|xt

s(s)|2 + β|xt
ss(s)|2

)
+ Eext

(
xt(s)

)
ds (1)

where α and β are parameters controlling the stretching and bending resistance
of the curve, correspondingly. According to [6] we solve the following differential
equation with an artificial time variable τ in order to obtain the minimum of
the functional (1) above:

xt
τ (s, τ) = αxt

ss(s, τ) + βxt
ssss(s, τ) − ∇Eext(xt(s, τ)) (2)

In this case the “external energy” Eext or the gradient of “external energy”
∇Eext are computed based on the image data. ∇Eext defines a structure within
the image towards which the snake is converging.

Gradient Vector Flow (GVF). Xu et al. [11] are proposing to replace ∇Eext

by the vector field v(x, y), called gradient vector flow (GVF). The authors state
that GVF is more robust and has a larger capture range in comparison with
∇Eext defined in [6]. In our procedure we compute GVF based on the enhanced
image obtained from the image processing step (3).

Stretching Open Active Contours (SOACs). Applying open-ended snakes
as defined in [6] for individual filament tracking has the drawback that the snake
tends to shrink over time. In [12] this issue is approached by using a stretching
term for open ends ∇Estr(xt(s)) in the ∇Eext of Eq. (2).
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3.2 Endpoint-Contolled Active Contours (ECAC)

In case of tracking intermediate filaments within their network SOACs tend to
increase their length over time, grow beyond their actual position or even move
into neighboring filaments. In this section we propose a method, which allows to
avoid such undesired behavior by tracking the snake’s endpoints independently.

Endpoint Control Term. Therefore, we define the following term Eends, which
allows to control the snake’s endpoints and to prevent it from overgrowth. In
the first analyzed image of the sequence we initialize a distance-based potential
P as a sum of all RBF functions centered at the respective branching points
p0b . These branching points are detected as described in Sect. 2, step (5). For
every image It of the sequence we define two distance potential functions Et

0

and Et
1 corresponding to the two ends of any snake xt(s). Initially, for I0 we set

E0
0 = E0

1 = P . For the next images It : t > 0 we define Et
0 and Et

1 separately. Et
0

(and equally Et
1) is initialized by placing an RBF centered at a point pt

∗, which is
the solution of the minimization problem described in the subsection “Endpoints
tracking” below. Thus, we define Eends based on Et

0 and Et
1 as follows:

Eends(xt(s)) :=

⎧⎪⎨
⎪⎩

Et
0(x

t(s)), if s = 0
Et

1(x
t(s)), if s = 1

0, if 0 < s < 1
(3)

The position of the snake on the current frame xt(s) is optimized by solving
Eq. (2), where ∇Eext incorporates also Eends:

∇Eext(xt(s)) := v(xt(s)) + ∇Estr(xt(s)) + ∇Eends(xt(s)) (4)

As a result, snake endpoints are captured by a force field and propelled
towards their respective nearest detected junction- or endpoint on the skeleton.

Endpoints Tracking. Let’s denote by pt−1 the position of the snake’s end-
point on the image t − 1. In order to determine the position of the RBF cen-
ter point pt

∗ on the current frame we minimize the following cost function:
pt

∗ = arg minp Ctotal(p; pt−1), where p is a point sampled from the skeleton of
the current image (image processing step (5)) in the neighborhood of point pt−1

in the previous frame. The total cost function is defined as a linear combination
of three terms:

Ctotal(p; pt−1) = C1(p; pt−1) + γC2(p; pt−1) + δC3(p) (5)

where γ ≥ 0 and δ ≥ 0 are weights balancing the contribution of each term.
These three terms were designed to guide the tracking as follows (c.f., Fig. 3):

(1) C1(p; pt−1) := ‖p − pt−1‖ is a penalty for a large shift with respect to the
position of pt−1;
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(2) C2(p; pt−1) := 1−〈Ît
p,s, Î

t−1
pt−1,s〉 is a penalty for local image pattern disparity

based on the normalized cross correlation, where 〈·, ·〉 is a binary operator
defining zero-normalized cross-correlation of two images and Ît

p,s and Ît−1
pt−1,s

denote image windows of size s centered at point p of the current image and
at point pt−1 in the previous image, respectively.

(3) C3(p) := minpt
b
‖p − pt

b‖ is a penalty for a large distance to the detected
branching points pt

b on the current image (see step (5) of Sect. 2);

Finally, the distance-based potentials Et
0 or Et

1 are generated around the
corresponding optimal solutions pt

∗.

4 Evaluation and Results

The tracker is initialized by interactively labelling the filament on the first frame
and propagates it through the whole image sequence. On every frame of the
image sequence except the first one we evaluate four distance measures between
tracked filament and the ground truth filament.

Fig. 4. Evaluation of the contribution of each penalty term to the tracking accuracy.
The subfigure on the left shows the error distribution for the Frechet distance and the
Endpoint distance for image sequences with IDs from 1 to 5. The subfigure on the right
depicts the error accumulation over time. Thereby, the mean Frechet distance over all
image sequences has been computed.

Table 1. Ground truth dataset

Seq. ID # Frames # Annotations

1 27 100

2 50 100

3 50 50

4 50 50

5 50 50

Ground Truth Annotation. In order to
evaluate the intermediate filament track-
ing error we have produced a ground truth
dataset comprising 5 sequences of confo-
cal images.

The filaments selected for ground
truth annotations were chosen randomly
based on the criterion that a filament can
be tracked visually by eye on every frame
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Fig. 5. Comparison of the tracking results for algorithms: “Li2009” [8], its modification
“Li2009+” and our method (with endpoints control). The ground truth position of the
filament is highlighted with a dark green thick line. (Color figure online)

of the image sequence. In total we obtained 350 ground truth filament trajecto-
ries. Short description of the dataset is shown in Table 1. More details: https://
github.com/if-tracking/if-dataset

Distance Measures. We use four metrics for calculating the distance between
two curves: Frechet distance, Endpoint (tip distance), Body distance, Length
distance. The three latter measures have been defined in [4].

Evaluation Results. We selected the parameters α and β in Eq. (5) using a grid
search on a training ground truth set. In order to illustrate the importance of each
term of our penalty function Ctotal (Sect. 3.2) based on our distance measures,
we evaluated our algorithm omitting one of these terms while applying the two
others (cf., Fig. 4). Especially, when considering the accumulation of the error
over time we observe that omitting only one term increases the error at least by
the factor of 1.5.

We also compared our method (ECAC) to the filament tracking algorithm
in [8] denoted here by “Li2009” and our modification of [8] denoted by “Li2009+”
and described below. Both methods are based on SOAC combined with a Parti-
cle Filter (PF) for endpoint tracking. The main difference between “Li2009” and
“Li2009+” is in the type of likelihood model Pl(Zt|Xt) used in PF. Pl(Zt|Xt)
describes the probability of an image patch Zt for a given position of an endpoint
Xt. “Li2009” defines Pl(Zt|Xt) based on an appearance model (which accord-
ing to [8] works well for tracking individual actin filaments). For the problem
of IF tracking we modify (referred as “Li2009+”) the likelihood model as fol-
lows: Pl(Zt|Xt = p) ∝ exp{−μminpb

‖p − pb‖}, where the expression under the

https://github.com/if-tracking/if-dataset
https://github.com/if-tracking/if-dataset
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exponential is designed to take into account the branching points pt
b in the cur-

rent image and is equal to −μC3(p) (see Sect. 3.2). For our data we set μ = 0.5.
As it’s shown in Figs. 5 and 6, the combination of three penalty terms for

endpoint tracking in ECAC significantly reduces the overall tracking error in
terms of all defined measures and outperforms “Li2009” and “Li2009+”. The
described above modification of the likelihood model in “Li2009+” also boosts
the performance of this algorithm comparing to the original model in “Li2009”’.

Fig. 6. Comparison of average errors of ECAC with the filament tracking algorithm
“Li2009” and its modification “Li2009+” for each of the 5 image sequences.

5 Conclusion

We presented a novel robust snake-based approach called Endpoint-controlled
active contours (ECAC) for tracking single intermediate filaments within their
cytoskeletal network. Our approach outperforms state-of-the-art approaches for
tracking cytoskeletal filaments by at least a factor of 1.5 in terms of mean Frechet
distance reduction for each evaluated video. This allows to automate the analysis
of geometric and dynamic properties of intermediate filaments over time and to
characterize different filament populations within the same cell. In conclusion,
the provided algorithm will help to understand how different architectures of
intermediate filament network contribute to fundamental cell behavior.
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