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Introduction
Protecting tissues and organs against ever-changing environ-
mental challenges is a major function of epithelial tissues. 
Renewal and repair of epithelia involve continuous cycles 
of proliferation, migration, and differentiation. As a result, the 
epithelial cytoskeleton is perpetually remodeled to optimize 
epithelial functions in space and time. The most diverse and 
abundant cytoskeletal components of epithelial cells are keratin 
intermediate filaments (KFs); there are >50 isotypes expressed 
in epithelia (Schweizer et al., 2006; Moll et al., 2008; Bragulla 
and Homberger, 2009). Recently identified regulatory functions 
of keratins in organelle trafficking, motility, translation, signal-
ing, immune response, and cell survival indicate that KFs have 
the plasticity and network architecture to fine-tune epithelial 
function (Toivola et al., 2005; Kim et al., 2006, 2007; Long 
et al., 2006; Kim and Coulombe, 2007; Magin et al., 2007; 
Vijayaraj et al., 2009; Depianto et al., 2010; Ku et al., 2010). 
One of the key questions is how keratins provide rigidity and 
strength but at the same time remain dynamic and flexible. At 
present, the molecular mechanisms governing keratin assembly, 
disassembly, and network architecture are largely unknown.  

We will discuss properties of a biosynthesis-independent multistep  
assembly/disassembly cycle of keratins that allows rapid network 
remodeling without network disruption.

Time-lapse imaging of cultured monolayers of living 
cells producing fluorescent keratins revealed that the network  
is highly dynamic (Windoffer and Leube, 1999; Yoon et al., 
2001; Windoffer et al., 2004). These observations implicate  
a perpetual cycle of KF assembly and disassembly in a conven-
tional (2D) culture setting (Figs. 1 and 2 and Video 1; Kölsch 
et al., 2010; Leube et al., 2011). In brief, the cycle begins with 
nucleation of keratin particles at the cell periphery, often in 
close proximity to lamellipodial focal adhesions. This is fol-
lowed by elongation of newly formed keratin particles during 
actin-dependent translocation toward the peripheral keratin  
network. After integration of precursor particles into the net-
work, KFs continue to move toward the nucleus and bundle. 
Some of them disassemble into soluble oligomers that rapidly 
diffuse throughout the cytoplasm and are available for another 
round of nucleation in the cell periphery. Others mature into a 
stable network that surrounds the nucleus and is anchored to 
desmosomes and hemidesmosomes. Collectively, cycling allows 
the epithelial cytoskeleton to remain in motion without loss of 
structural integrity.

Keratin network assembly
In cultured epithelial cells, formation of KFs, referred to as 
nucleation, starts in the cell periphery in close vicinity to focal 
adhesions (Windoffer et al., 2006). Focal adhesions anchor actin 
bundles (Petit and Thiery, 2000; Geiger et al., 2001; Carragher 
and Frame, 2004) and induce changes in microtubule network  
architecture (Krylyshkina et al., 2003; Small and Kaverina, 
2003). By also linking KF nucleation to these sites, coordinated 
restructuring of the entire cytoskeleton is accomplished. This is 
of particular relevance for moving cells. In accordance, a remark-
able increase of keratin particle formation is observed in lamel-
lipodia of migrating cells (Wöll et al., 2005; Kölsch et al., 2010; 
Rolli et al., 2010). A possible nucleus for filament formation has 
been identified in vitro: the 60-nm-long unit length filament 
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Different factors influence bundling: (a) IF-associated proteins 
(Krieg et al., 1997; Xu et al., 2000; Makino et al., 2001; Listwan 
and Rothnagel, 2004; Long et al., 2006; Osmanagic-Myers et al., 
2006; Boczonadi et al., 2007; Ishikawa et al., 2010); (b) intrin-
sic and isotype-specific properties of KFs themselves (Eichner 
et al., 1986; Blessing et al., 1993; Hofmann et al., 2000), which 
bundle spontaneously in vitro in a process referred to as self- 
organization (Lee and Coulombe, 2009; Kim et al., 2010); and 
(c) phosphorylation, which has been shown to coincide with 
bundling upon mechanic and chemical stress (Strnad et al., 
2001; Flitney et al., 2009).

Keratin filament disassembly
Because KF assembly is highly favored over disassembly, 
mechanisms must exist to remove assembled filaments and es-
pecially dense filament bundles that would interfere with cellu-
lar functions. Possible mechanisms regulating this balance are 
degradation of KF polypeptides and/or disassembly of KFs into 
reusable subunits. In support of the first mechanism, ubiquitina-
tion of keratins and subsequent proteasomal degradation has 
been described previously (Ku and Omary, 2000; Löffek et al., 
2010; Rogel et al., 2010). It is elevated in stress and pathology, 
which is presumably a consequence of increased network  
restructuring (Zatloukal et al., 2007; Jaitovich et al., 2008;  
Na et al., 2010). This aspect has been exploited to reduce aggre-
gates typical of keratinopathies by application of chemical 
chaperones and chaperone-associated ubiquitin ligases (Lee  
et al., 2008; Chamcheu et al., 2010; Löffek et al., 2010). The 
second mechanism, however, seems to be the major mode in 
rapidly dividing cultured cells, as time-lapse fluorescence re-
cordings showed that KF formation occurs independent of and 
in the absence of protein biosynthesis (Windoffer et al., 2004; 
Kölsch et al., 2010). Imaging of single inward-moving KF bun-
dles further revealed that they dissolve over time without ap-
pearance of distinct fragments, which indicates that the released 
subunits are nonfilamentous (Fig. 2 and Video 1). Mechanisti-
cally, the release of soluble subunits may occur similarly to the 
lateral subunit exchange that has been described for IFs at equi-
librium (Eriksson et al., 2009). At present, although it is not 
known how disassembly is regulated, the involvement of phos-
phorylation is likely, as inhibition of p38 MAPK or PKC  
activities induces increased network stability and, conversely, 
increased kinase activities result in enhanced KF network 

(ULF), which consists of 32 monomers (Herrmann et al., 1999; 
Herrmann et al., 2002). In living cells, it is not clear whether the 
particles that can form KFs, termed KF precursors (Windoffer  
et al., 2004), are the same as ULFs because the resolution of 
standard light microscopy cannot distinguish single ULFs.

Because of the lack of KF precursor polarity, both ends 
are equally suited to support elongation by oligomer addition.  
In vitro observations of vimentin intermediate filaments (IFs) 
suggest that single and multiple ULFs are indiscriminately added 
at either end (Kirmse et al., 2007). In accordance with these find-
ings, live cell imaging of keratins reveals continuous particle 
elongation and fusion of larger particles (Windoffer et al., 2004, 
2006; Wöll et al., 2005). As long as they retain their free ends, 
they elongate. When particles approach the filament network, 
they integrate via their ends, thereby adding another branch to 
the filament network (Windoffer et al., 2004, 2006; Wöll et al., 
2005). In the case of mutant keratins that cause blistering skin 
diseases in humans, elongated filaments are not formed, and, 
instead, short-lived spheroidal granules are generated near focal 
adhesions (Werner et al., 2004; Windoffer et al., 2006).

Keratin networks are heterogeneous; they are composed 
of 2–10 different isotypes. The modes and mechanisms gov-
erning their organization and distribution remain unknown but 
may depend to a considerable extent on the degree of cell po-
larity. The concept that the intracellular distribution of keratin 
isotypes results from their primary sequence is intriguing but 
not well-supported by existing data. In intestinal epithelia of  
the mouse, the isotypes K20 and K8 are codistributed through-
out the cell, whereas in umbrella cells of the bladder, K20 is re-
stricted to the apical domain, which suggests cell type–specific 
mechanisms (Magin et al., 2006). Another feature of network 
organization is coexistence of individual filaments and bundles 
(i.e., interfilament assemblies). Consequences of bundling are 
increased mechanical stability and reduced turnover (Flitney  
et al., 2009; Lee and Coulombe, 2009; Kim et al., 2010), prereq-
uisites for a resilient and durable cytoskeletal scaffolding. How-
ever, this may not always be the case because in the absence of 
the cytoskeletal cross-linker plectin, bundling is even increased 
but appears to be dysfunctional because cellular resilience 
is reduced (Osmanagic-Myers et al., 2006). In cultured cells,  
bundling is reflected by increasing KF diameter toward the  
nucleus caused by lateral association of filaments (Windoffer  
et al., 2004; Lee and Coulombe, 2009; Kölsch et al., 2010). 

Figure 1.  The keratin cycle. Soluble keratin 
oligomers assemble into particles in the cell 
periphery in proximity to focal adhesion sites 
(nucleation). These particles grow (elongation) 
and move toward the cell center in an actin-
dependent process (transport). Subsequently, 
elongated KF particles are incorporated into 
the peripheral KF network (integration). Fila-
ment bundling occurs during further centripetal 
translocation toward the nucleus (transport). 
Soluble oligomers dissociate (disassembly), dif-
fuse throughout the cytoplasm (diffusion), and 
are reutilized for another cycle of KF formation 
in the cell periphery. Alternatively, bundled 
filaments are stabilized (maturation), forming, 
e.g., the stable perinuclear cage.
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turnover (Wöll et al., 2007; Sivaramakrishnan et al., 2009). 
Furthermore, the nonfilamentous keratin pool is increased dur-
ing mitosis and in different stress paradigms, i.e., in situations 
of elevated network remodeling that are coincident with in-
creased keratin phosphorylation (Chou et al., 1993; Liao and 
Omary, 1996; Omary et al., 1998; Strnad et al., 2002; Ridge et al., 
2005). Interestingly, sumoylation has recently been implicated 
in keratin network dynamics (Snider et al., 2011).

Properties of the soluble keratin fraction
Heterotypic, nonfilamentous keratins most likely correspond to 
the biochemically defined soluble pool consisting of tetramers 
and/or small oligomeric assemblies (Soellner et al., 1985; Chou 
et al., 1993; Bachant and Klymkowsky, 1996). To prevent im-
mediate assembly after biosynthesis or after filament disassem-
bly, the soluble, nonassembled state must be stabilized, e.g., by 
protein modification, by association with chaperones such as 
Hsp70 and Hsc70, by interaction with IF-associated proteins 
(IFAPs), or by binding to 14-3-3 proteins (Liao and Omary, 
1996; Wiche, 1998; Planko et al., 2007; Mashukova et al., 2009).  

14-3-3 proteins predominantly bind to phosphorylated client 
proteins and are able to change their conformation (Kjarland  
et al., 2006; Díaz-Moreno et al., 2009). Therefore, it is an attrac-
tive assumption that Ser phosphorylation of keratin subunits 
along the head domain occurs soon after biosynthesis or disas-
sembly to prevent assembly at nonpermissive sites in the cyto-
plasm. Hyperphosphorylation by Cdk1, Plk1, Rho-kinase, and 
Aurora B is important for local breakdown of several IF classes 
during mitosis and is essential for the efficient segregation of  
IF networks into daughter cells (Izawa and Inagaki, 2006). 
Given the comparatively small size of the disassembled sub-
units and their solubility in the aqueous cytoplasm, they should  
rapidly distribute throughout the cytoplasmic space by diffusion.  
A rapidly diffusible pool was recently identified by fluo-
rescence recovery after photobleaching (Kölsch et al., 2010). 
Nucleation continues in the presence of actin filament and 
microtubule disruptors, which supports the notion that an ac-
tive transport mechanism is not needed for delivery of kera-
tins to peripheral nucleation sites (Wöll et al., 2005; Kölsch  
et al., 2009).

Figure 2.  Steps of the keratin cycle. Repre-
sentative images (inverse presentation), taken 
from time-lapse fluorescence microscopy of 
cultured cells producing fluorescent keratins 
(see Video 1), that illustrate the steps of the 
keratin cycle (see also Fig. 1). Images were 
adapted with permission from the Journal 
of Cell Science (Kölsch et al., 2010) and 
Molecular Biology of the Cell (Windoffer  
et al., 2004). Nucleation: Newly appearing 
particles that are generated in proximity to 
the plasma membrane (to the right) are en-
circled. Elongation: An elongating particle is 
marked by an arrow. Integration: The labeled 
particles (corresponding particles are color-
coded in successive frames) move toward the 
nucleus, fuse with each other, and integrate 
into the peripheral keratin network. Bundling: 
Inward-moving filaments fuse laterally and 
bundle (one example is marked by an arrow).  
Disassembly: The demarcated filament bundle 
disappears gradually without filament frag-
mentation. Bars, 2 µm.

http://www.jcb.org/cgi/content/full/jcb.201008095/DC1
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link cytoskeletal networks) and of the plakophilin family that 
localize to adhesion sites are prime candidates to fulfill such 
organizational functions, as they contain keratin binding sites 
and affect kinase/phosphatase activity (Osmanagic-Myers et al., 
2006; Bass-Zubek et al., 2009; Kostan et al., 2009; Bordeleau  
et al., 2010). It was also demonstrated that shear stress increased 
PKC-mediated phosphorylation of K18-S33, resulting in an 
elevated exchange rate of the KF network (Sivaramakrishnan 
et al., 2009). The relevance of signaling-dependent keratin 
phosphorylation for dynamic network organization is most  
evident in disease: autoantibodies from the skin blistering  
disease Pemphigus vulgaris have been shown to induce p38 
MAPK-dependent keratin retraction (Berkowitz et al., 2005). 
Furthermore, toxic liver injury induced by the antifungal drug 
griseofulvin leads to increased keratin phosphorylation, elevated 
soluble keratins, and aggregate formation (Ku et al., 1996; 
Stumptner et al., 2001; Toivola et al., 2004; Fortier et al., 
2010), which can be counteracted, at least in vitro, by p38 
MAPK inhibitors (Nan et al., 2006).

Exit of filaments from the turnover cycle
Plasticity must be weighed against the stabilizing properties of 
the keratin network providing mechanical strength to resting cells. 
In cultured interphase cells, desmosome- and hemidesmosome-
anchored filaments, as well as the perinuclear cage-like struc-
tures, are prominent examples in which stabilization prevails 
over dynamics (Fig. 3). Video 1 presents an example of the 
long-term stability of filaments surrounding the nucleus. Fur-
thermore, desmosome-anchored filaments are more resilient 
than the rest of the KF network to disruption by the tyrosine 
phosphatase inhibitor vanadate (Strnad et al., 2002). In a stable 
tissue context, cycling may become less and less important as 
mechanical functions become more important.

An attractive idea is that anchorage-dependent mechano-
sensing affects KF stability by altered interaction with proteins 
that modulate KF dynamics such as desmoplakin, BPAG1, 
plectin, periplakin, and epiplakin (Bornslaeger et al., 1996; Wan  
et al., 2004; Osmanagic-Myers et al., 2006; Boczonadi et al., 
2007; Spazierer et al., 2008; Ishikawa et al., 2010). In the case of 
the perinuclear network, attachment to the nuclear envelope via 
the plectin–nesprin-3a connection (Wilhelmsen et al., 2005) may 
confer filament stabilization; in the case of junction-associated  
KFs, special keratins such as K80 (Langbein et al., 2010) and 
keratin-binding proteins such as desmoplakin, plakophilin, 
plectin, and BPAG1 may be involved in KF stabilization (Guo 
et al., 1995; Eger et al., 1997; Holthöfer et al., 2007; Kostan  
et al., 2009; Green et al., 2010). Although all these results clearly 
show that anchorage protects KFs against disassembly, dif-
ferential filament turnover has not been examined in detail at 
the single bundle/filament level. Chemical and/or biophysical 
keratin modification may be the result of coupling KFs to the 
mechanotransducive systems and may lead to KF stabilization 
much like the phosphorylation of the tail domain of the IF glial 
fibrillary acidic protein (GFAP) that reduces turnover (Takemura 
et al., 2002). We suggest referring to the acquisition of this prop-
erty as “maturation,” which is also observed for the other cyto-
skeletal filaments (e.g., association with proteins, detyrosination 

Regulation of the keratin cycle in space  
and time
The continuous transport of filamentous keratins toward the 
nucleus is essential for keratin cycling. Keratin isotype, cell 
type–specific properties, and other factors such as filament- 
associated proteins appear to determine and modulate this 
process. Growing keratin particles move preferentially along 
actin stress fibers at 300 nm/min (Wöll et al., 2005; Kölsch  
et al., 2009). This movement may be directly coupled to lamel-
lar actin treadmilling through plectin-mediated linkage (Litjens 
et al., 2003; Rezniczek et al., 2004). Moreover, keratin particles 
can also be transported along microtubules (Yoon et al., 2001; 
Liovic et al., 2003; Wöll et al., 2005; Windoffer et al., 2006).

The molecular mechanism of the subsequent inward- 
directed movement of the keratin network (Windoffer and 
Leube, 1999; Yoon et al., 2001; Kölsch et al., 2010) is cur-
rently not clear. One possibility is that the intrinsic elasticity of 
the filaments (Kreplak et al., 2008) in combination with their 
nuclear anchorage, through the interaction between plectin and 
the outer nuclear membrane protein nesprin-3 (Wilhelmsen  
et al., 2005), accounts for it. Alternatively, actin filaments and/or 
microtubules are also involved in this movement. It has been 
observed that energy depletion inhibits KF motility, which can 
be taken as an indication of an energy-requiring and motor 
protein–driven active process (Hollenbeck et al., 1989; Strnad  
et al., 2001; Yoon et al., 2001).

Focal adhesion–dependent nucleation is another major 
cycle determinant, at least in vitro. One factor that may be 
involved is the cytoskeletal cross-linker plectin, particularly 
isoform 1f that has been localized to focal adhesions and is  
capable of binding to keratins (Nikolic et al., 1996; Steinböck  
et al., 2000; Litjens et al., 2003; Rezniczek et al., 2003). Other 
candidate proteins that may modulate keratin dynamics are 
integrins, vinculin, metavinculin, talin, and zyxin–focal adhe-
sion components that have been shown to bind to IFs (Kreis 
et al., 2005; Ivaska et al., 2007; Kostan et al., 2009; Sun  
et al., 2008a,b, 2010). Besides these structural components, focal 
adhesion–dependent signaling is likely involved in keratin nu-
cleation. Among additional factors, PKCs and MAPK have been 
discussed (Omary et al., 1992; Ridge et al., 2005; Osmanagic- 
Myers et al., 2006; Akita et al., 2007; Wöll et al., 2007;  
Bordeleau et al., 2008, 2010; Sivaramakrishnan et al., 2009). 
Yet, their spatiotemporal interaction with keratin assembly  
at focal adhesions is still unknown.

Cell shape changes, which occur frequently in motile and 
dividing cells, are expected to increase cycling, whereas stably 
anchored cells in mature tissues need very little cycling. To  
account for the gradual transition between these extremes, regu-
lators should exist for graded and locally restricted responses. 
In support, cycling of wild-type and mutant keratins are slowed 
down by p38 MAPK inhibitors, presumably by affecting kera-
tin phosphorylation (Wöll et al., 2007). This provides a pos-
sible mechanism for the attenuation of keratin cycling through 
stress-induced signaling. Compartmentalization of kinases  
and phosphatases such as focal adhesion kinase, protein kinase C, 
and others may further support localized alteration of net-
work configuration. Members of the plakin family (which 
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patterns such as the localization in the terminal web, a dense 
filamentous network below the apical surface of the polarized 
epithelial cells of the gut (compare Oriolo et al., 2007). Col-
lectively, keratin cycling may be interpreted as a continuous 
probing of the immediate extracellular surroundings until new 
physical contacts with other cells and/or the extracellular matrix 
can be established and “hard-wired” through desmosomes and 
hemidesmosomes. Because it does not require protein biosyn-
thesis, it provides the cell with a variety of options to respond 
to environmental challenges within a small time frame. Thus, it 
is the dynamics of KF networks that enhances the adaptability 
and, hence, the function of moving cells.

Another important function of keratin cycling is to guaran-
tee continued maintenance of an intact network during epithelial 
differentiation, which supports gradual polypeptide exchange 
without filament disruption. Thus, different admixtures of kera-
tins are observed in basal versus suprabasal epidermal keratino-
cytes, and, consequently, basal type keratins are still detectable 
in cells that lack the corresponding mRNAs (Lersch and Fuchs, 
1988; Reichelt et al., 2001).

Modulation of epithelial functions by 
keratin cycling
KFs have been regarded as a rather static component of the 
cytoskeleton conferring mechanical strength onto epithelia. 
This property is essential for resting cells, which provide the 
epithelium with mechanical strength. Loss of KF network in-
tegrity and, consequently, of epithelial rigidity leads to skin 
blistering disease (Coulombe et al., 2009). Yet, KFs also play 
a major role in dynamic processes, especially in wound healing 
and cancer metastasis (Paladini et al., 1996; Mazzalupo et al., 

of tubulin; Bulinski and Gundersen, 1991; Arce et al., 2008; 
Konishi and Setou, 2009; Ikegami and Setou, 2010).

Advantages of cytoskeletal cycling
Keratin recycling is certainly more efficient than degradation 
and de novo biosynthesis. Cycling has also been described for 
other cytoskeletal components, notably for the actin system 
characterized by filament treadmilling and retrograde flow in 
motile cells (Table I; Small and Resch, 2005; Schaus et al., 
2007; Michalski and Carlsson, 2010). The dynamic instability 
of microtubules, i.e., the switching between growing and shrink-
ing (Mitchison and Kirschner, 1984; Gardner et al., 2008), is 
another example for this strategy. Time-dependent, cyclic alter-
ations of cellular components lead to diversification of func-
tional states and, in turn, increase the probability for the cell to 
meet environmental demands by having the “right” response 
ready in time to ensure survival and functioning (Wolf et al., 
2005; Vogel and Sheetz, 2009).

We suggest that cycling of keratins is a mechanism for 
checking the cell periphery for the occurrence of new cell 
contacts. Of note, the presence/absence of keratins affects the 
stability of desmosomes and hemidesmosomes (Long et al., 
2006; unpublished data). In the case of focal adhesions, the 
cycle is accelerated by increased nucleation and thereby facili-
tates network growth toward the leading edge. In motile cells, 
the cycle may therefore be part of the complex assembly and 
disassembly mechanisms involved in moving the cell body 
(Proux-Gillardeaux et al., 2005). Upon filament attachment to 
hemidesmosomes and desmosomes, the cycle is slowed down 
and therefore supports continued mechanical stability. This 
mechanism may contribute to the peculiar in vivo distribution 

Figure 3.  Keratin network dynamics in three 
different situations. (A) Approaching epithelial 
cells, e.g., upon wound closure: The motile 
cells require a dynamic cytoskeleton. This is 
supported by the keratin cycle, which allows 
rapid turnover and restructuring of the periph-
eral network using focal adhesion–dependent 
guidance cues, whereas the perinuclear net-
work remains comparatively static. ecm, extra-
cellular matrix; fa, focal adhesion; n, nucleus. 
(B) Differentiated static epithelium: Upon stable 
contact formation with neighboring epithelial 
cells through tight junctions (tj), adherens junc-
tions (aj), and desmosomes (des), and with the 
extracellular matrix of the basement membrane 
through hemidesmosomes (hdes), the keratin 
network matures into topologically restricted 
thick bundles with very little keratin cycling. 
(C) Invasion of epithelial cell into connective 
tissue: Cells lose contact with each other and 
reduce stable hemidesmosomal adhesion co
incident with up-regulation of keratin cycling 
in the leading edge for network remodeling.
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Table I.  Basic assembly features of cytoskeletal filaments

Properties IFs Microtubules Actin filaments

Assembly units Apolar fibrous tetramers Globular heterodimers Globular monomers
Nucleotide requirement None GTP ATP
Nucleation sites/nucleating factors Cell periphery/unknown Microtubule organizing center 

(MTOC)/-tubulin ring complex
Juxtamembranous sites/ARP2/3  

complex, formins
Elongation Both ends Plus end “Barbed” end
Protofilaments 8 13-15 Double helix
Filament diameter 10 nm 25 nm 6 nm
Preferred disassembly site Unknown Minus end “Pointed” end
Network remodeling Lateral subunit exchange/ 

network cycling 
Dynamic instability/treadmilling Retrograde flow/treadmilling

The table summarizes textbook knowledge integrating also recent results on keratins. For further reading see, e.g., Chhabra and Higgs (2007), Herrmann et al. 
(2007), Akhmanova and Steinmetz (2008), Wade (2009); Campellone and Welch (2010).

2003; Knösel et al., 2006; Ptitsyn et al., 2008; Karantza, 2011). 
The keratin cycle, which proceeds at various scales ranging 
from diffusible filament precursors to macromolecular network 
components and spans the entire cytoplasmic space, may be a 
major contributing factor (Fig. 3).

An important prediction is that keratin cycling determines 
epithelial motility, migration, and vesicle trafficking, and that 
it is an important basis of the epithelial stress response. Regula-
tion of cycling is linked to keratin modification, notably phos-
phorylation, and is therefore targeted by signaling pathways.  
A provocative but testable idea is that the predisposition of 
transgenic mice with phosphorylation-deficient K8 and K18 
mutants to liver disease (Ku and Omary, 2006) and, conversely, 
the recently described cytoprotective effects of glycosylated 
keratins (Ku et al., 2010), are coupled to differences in keratin 
dynamics. The extent to which keratins regulate protein bio-
synthesis via 14-3-3 proteins or glucose transporters is likely 
to be affected by keratin dynamics (Kim et al., 2006; Vijayaraj 
et al., 2009). The activity of 14-3-3 proteins depends on target 
protein phosphorylation and nucleo-cytoplasmic distribution 
(Mackintosh, 2004). Expression of K17 (and possibly addi-
tional type I keratins) recruits 14-3-3 to the cytoplasm, where 
it stimulates the mammalian target of rapamycin (mTOR) path-
way (Kim et al., 2006). The presence of keratins ensures the 
correct localization and function of the glucose transporter  
GLUT, with the absence of keratins leading to impaired glucose 
uptake and an AMPK-mediated down-regulation of mTORC1 
(Vijayaraj et al., 2009). Finally, the degree of translational 
stimulation through elongation factor 4A (eIF4A)–plakophilin-1  
may be regulated through the interaction of keratins with 
plakophilin-1 (Wolf et al., 2010). An important question is 
whether the distinct keratin assembly forms (e.g., filamentous 
vs. nonfilamentous) fulfill specific regulatory functions. Even 
more, one can predict that not only filamentous subdomains 
fulfill specific roles but that also nonfilamentous keratins act in 
a context-specific manner.

A further prediction is that accumulation of distinct cycle 
intermediates results in functional consequences on epithelial 
cell behavior. In support, cells lacking keratins or producing 
mutant keratins, which are characterized by reduced KFs and 
increased soluble keratins, migrate faster in scratch assays 
(Morley et al., 2003; Long et al., 2006).

Cycling in other IF systems
Other IF networks also appear to exchange subunits with mech-
anisms similar to those observed for keratins (Tsuruta and 
Jones, 2003; Mignot et al., 2007; Burgstaller et al., 2010). Ex-
tensive evidence has been provided for intense cross-talk be-
tween vimentin IFs and focal adhesions (Seifert et al., 1992; 
Gonzalez et al., 2001; Tsuruta and Jones, 2003; Spurny et al., 
2008; Bhattacharya et al., 2009; Burgstaller et al., 2010), and 
plectin 1f has been shown to be instrumental in the recruitment 
of growing vimentin particles to focal adhesions (Burgstaller  
et al., 2010). Particle elongation has been examined for vimen-
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mediated mechanotransduction (Zhang et al., 2011).
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Conclusions and open questions
Recent observations support the view that plasticity of the epi-
thelial KF network not only relies on changes in biosynthesis 
and degradation but is also accomplished by cycles of assembly 
and disassembly. Although this concept is supported by micro
scopic observations in cultured living cells, the underlying 
molecular mechanisms still need to be worked out in vivo and 
need to be correlated with observations on in vitro KF assembly 
(Herrmann et al., 2002) and alternative concepts of IF network 
dynamics (Ngai et al., 1990; Miller et al., 1991; Chang et al., 
2006). Pertinent questions to be answered are: What powers  
the cycle? How do associated proteins such as plectin, 14-3-3, 
Akt-1, Hsp70, and others affect it? How do environmental  
factors such as mechanical force, cytokines, or microbes affect 
the keratin cycle, and what effects does the cycle have on the 
cell? How is KF cycling affected by keratin isotypes? What 
are the precise consequences of keratin modification? Which 
cellular processes are linked to keratin cycling and how is 
this accomplished? Is cycling needed for the stress protective 
function of keratins? And finally, how universal is the concept  
of cycling, and is it relevant to other IFs?
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