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SUMMARY

Analysis of intestine-specific mice lacking desmoplakin or
both desmoplakin/desmoglein 2 show that these proteins
are dispensable under basal conditions. However, desmo-
plakin is essential for cell adhesion, mechanical resilience,
and proper keratin network organization, and protects from
intestinal injury.

BACKGROUND & AIMS: Desmosomes are intercellular junc-
tions connecting keratin intermediate filaments of neighboring
cells. The cadherins desmoglein 2 (Dsg2) and desmocollin 2
mediate cell–cell adhesion, whereas desmoplakin (Dsp) pro-
vides the attachment of desmosomes to keratins. Although the
importance of the desmosome–keratin network is well estab-
lished in mechanically challenged tissues, we aimed to assess
the currently understudied function of desmosomal proteins in
intestinal epithelia.

METHODS: We analyzed the intestine-specific villin-Cre DSP
(DSPDIEC) and the combined intestine-specific DSG2/DSPDIEC

(DDsg2/Dsp) knockout mice. Cross-breeding with keratin
FLA 5.6.0 DTD � JCMGH936 proof � 3
8–yellow fluorescent protein knock-in mice and generation of
organoids was performed to visualize the keratin network. A
Dsp-deficient colorectal carcinoma HT29 Q-derived cell line was
generated and the role of Dsp in adhesion and mechanical
stress was studied in dispase assays, after exposure to uniaxial
cell stretching and during scratch assay.

RESULTS: The intestine of DSPDIEC mice was histopathologi-
cally inconspicuous. Intestinal epithelial cells, however, showed
an accelerated migration along the crypt and an enhanced
shedding into the lumen. Increased intestinal permeability and
altered levels of desmosomal proteins were detected. An
inconspicuous phenotype also was seen in DDsg2/Dsp mice.
After dextran sodium sulfate treatment, DSPDIEC mice devel-
oped more pronounced colitis. A retracted keratin network was
seen in the intestinal epithelium of DSPDIEC/keratin 8–yellow
fluorescent protein mice and organoids derived from these
mice presented a collapsed keratin network. The level, phos-
phorylation status, and solubility of keratins were not affected.
Dsp-deficient HT29 cells had an impaired cell adhesion and
suffered from increased cellular damage after stretch.

CONCLUSIONS: Our results show that Dsp is required for
proper keratin network architecture in intestinal epithelia,
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mechanical resilience, and adhesion, thereby protecting from
injury. (Cell Mol Gastroenterol Hepatol 2021;-:-–-; https://
doi.org/10.1016/j.jcmgh.2021.12.009)

Keywords: Desmosome; Keratin; Apical Junctional Complex;
Intestinal Epithelial Barrier; Cell Adhesion.

eratin intermediate filaments are multifunctional
15

Abbreviations used in this paper: Agr2, anterior gradient 2; BrdU, 5-
bromo-2-deoxyuridine; BSA, bovine serum albumin; Dsc, desmo-
collin; Dsg, desmoglein; Dsp, desmoplakin; DSS, dextran sodium sul-
fate; FITC, fluorescein isothiocyanate; fl, floxed; GFP, green
fluorescent protein; HT29, ______; IEC, intestinal epithelial cells; IL,
interleukin; K, keratin; mRNA, messenger RNA; PAS, periodic acid–
Schiff; PBS, phosphate-buffered saline; PG, plakoglobin (g-catenin);
SDS, sodium dodecyl sulfate; WT, wild-type; YFP, yellow fluorescent
protein.
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Kstress-protectors expressed primarily in epithelial
cells.1,2 They are connected through desmosomal cell–cell
junctions forming transcellular networks.3,4 Desmosomes
consist of transmembrane components from the desmo-
somal cadherin families of desmogleins (Dsg) and desmo-
collins (Dsc) that mediate cell–cell adhesion. In the
cytoplasm, they are associated with the armadillo proteins
plakophilin and plakoglobin and the plakin member des-
moplakin (Dsp), which mediates the attachment to the
keratin filament network.5,6 The desmosome–keratin sys-
tem is mainly responsible for the stability of epithelial tis-
sues and its function is particularly prominent in
mechanically challenged tissues such as the epidermis. In
the latter, mutations in keratins lead to a large variety of
skin disorders such as epidermolysis bullosa or palmo-
plantar keratoderma.2,7 Similarly, auto-antibodies against
Dsg/Dsc cause autoimmune blistering diseases such as
pemphigus vulgaris, while Dsp mutations were implicated in
keratoderma.8,9 In addition, increasing evidence has shown
the importance of the desmosome–keratin system in me-
chanically less challenged glandular and single-layered
epithelia. For example, mutations in keratin (K)8/K18, the
major keratin family members expressed in simple epithelia,
increased the susceptibility to advanced liver disease.10 An
intronic variant in the Dsp gene that results in diminished
Dsp levels is the most established genetic risk factor pre-
disposing to idiopathic pulmonary fibrosis.11 Although the
biological role of K8/K18 variants in inflammatory bowel
disease remains to be clarified,12 altered desmosomal pro-
tein levels are seen in individuals with inflammatory bowel
disease and these changes may contribute to the impaired
intestinal barrier seen in Crohn’s disease.13–15 These data
are supported by findings in multiple transgenic models.
Among them, K8 knockout mice show spontaneous colitis,16

while loss of Dsg2, the only Dsg produced in intestinal
epithelial cells, is well tolerated under basal conditions, but
leads to increased susceptibility to both chemical and mi-
crobial injury.13 To further elucidate the biological role of
the keratin-desmosome system in the intestine, we turned
to Dsp knockout animals. Although Dsp is essential for
epidermal sheet formation,17 intestine-specific Dsp
knockout (DSPDIEC) mice did not show an obvious pheno-
type under basal conditions. This was somewhat surprising
given that intestinal epithelial-specific loss of plectin,
another cytolinker connecting keratin filaments with cell
junctions, led to spontaneous colitis.18 Therefore, we
decided to systematically study the impact of Dsp loss on
keratin network architecture as well as the susceptibility to
intestinal injury. To that end, DSPDIEC mice were cross-bred
with the reporter K8-yellow fluorescent protein (YFP)
FLA 5.6.0 DTD � JCMGH936 proof � 3
knock-in mouse19 or subjected to dextran sodium sulfate
(DSS)-induced colitis. Mating of DSPDIEC mice with an
intestinal-specific Dsg2 knockout (DSG2DIEC) was used to
evaluate the consequence of a combined desmosomal defect.
In summary, we show that Dsp is required for keratin
network organization, epithelial adhesion, and the protec-
tion of intestinal epithelial cells from mechanical and
chemical injury.

Results
To study the biological relevance of Dsp in the intestine,

we generated intestinal epithelium–specific Dsp knockout
mice (DSPDIEC). In line with previous findings,20 DSPDIEC

mice showed an efficient deletion of Dsp in both jejunum
and colon, while no Dsp loss was observed in other organs
such as stomach, liver, and heart (Figures 1A and B and 2).
Immunofluorescence staining of colonic tissue confirmed
the loss of Dsp and showed a normal distribution of other
desmosomal proteins (Figure 1C). Biochemical analysis
showed decreased levels of Dsg2 and plakoglobin (PG),
while the amounts of other desmosomal proteins were un-
altered (Figure 1D and E). These changes seemed to occur
post-transcriptionally given that there were no differences
in the Dsg2/PG messenger RNA (mRNA) levels (Figure 3).
DSPDIEC mice developed normally; displayed normal body
weight, colonic and small intestinal length; and had no
diarrhea (Figure 4A). No inflammation was seen and this
finding was supported by unaltered expression of the
proinflammatory cytokines tumor necrosis factor a, inter-
leukin (IL)1b, and IL6 (Figure 4B and C). Histologic evalu-
ation showed a morphologically inconspicuous small and
large intestine (Figure 5A and not shown Q). Electron micro-
scopy showed normal-appearing desmosomal plaques in the
colon (Figure 5B). Notably, DSPDIEC animals showed some-
what increased intestinal permeability for 4 kilodaltons
fluorescein isothiocyanate (FITC) dextran (Figure 5C).
Accelerated migration of 5-bromo-2-deoxyuridine (BrdU)-
labeled colonic cells along the crypt axis was seen 24 hours
after BrdU injection (Figure 6A). In line with the increased
cellular turnover, Dsp-deficient animals harbored a higher
epithelial cell content in the intestinal lumen as indicated by
the increased amount of the epithelial cell marker K8
(Figure 6B). The analysis of selected differentiation/lineage
markers showed an inapparent stem cell differentiation
pattern (Figure 7). To explore the impact of aging, we sys-
tematically analyzed 52-week-old animals. DSPDIEC mice had
January 2022 � 7:36 pm � ce DVC
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Q16

Figure 1. DSP-deficient
animals (DSPDIEC)
showed an intestine-
specific Dsp loss and an
altered desmosomal
protein composition.
(A and B) DSP mRNA and
protein levels were evalu-
ated by real-time reverse-
transcription polymerase
chain reaction (n ¼ 3) and
immunoblotting in the
delineated organs of
10-week-old, sex-matched
DSPDIEC (DIEC) and DSPfl/fl

(fl/fl) mice. The L7Q40 (mouse
ribosomal protein) gene
and b-tubulin (bTub) were
used as an internal and
loading control, respec-
tively. (C) The distribution
of Dsp, Dsg2, Dsc2, and
PG in the colons of
10-week-old, sex-matched
DSPDIEC (DIEC) mice and
their floxed littermates (fl/fl)
was visualized by immu-
nofluorescence. Scale
bars: 20 mm. (D and E) The
impact of Dsp loss on
colonic desmosomal
composition was analyzed
by immunoblotting (n ¼ 5).
b-tubulin was used as a
loading control. The optical
density (OD) values from
immunoblots were
normalized to the OD
values of b-tubulin. A
2-tailed Student t test was
used for statistical ana-
lyses. **P < .01, ***P <
.001. Similar results were
obtained in male and fe-
male mice. Pkp2,
plakophilin 2.
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normal body weights, colon, and small intestinal lengths
(Figure 8A). Histologic staining showed a regular colonic
structure, while periodic acid–Schiff (PAS) staining and
immunohistochemical staining for anterior gradient 2
(Agr2) showed an unaltered number of goblet cells
(Figure 8B). No colonic inflammation was noted within the
groups as confirmed by unchanged levels of cytokines tu-
mor necrosis factor a and IL1b (Figure 8C). Because neither
a loss of a desmosomal cadherin13 nor a Dsp deficiency in
FLA 5.6.0 DTD � JCMGH936 proof � 3
intestinal epithelial cells led to an obvious phenotype under
basal conditions, we wondered about an impact of a com-
bined defect. To that end, we generated mice with a deletion
of both Dsg2 and Dsp in the intestinal epithelia (DDsg2/
Dsp). Biochemical analysis confirmed the efficient deletion
of both desmosomal proteins (Figure 9). DDsg2/Dsp ani-
mals (age, 28 wk) developed normally and no changes in
body weight or in the colon and small intestinal lengths
were detected (Figure 10A). Histology illustrated an
352
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Figure 2. DSP-deficient
animals (DSPDIEC)
showed an efficient
intestine-specific Dsp
loss. DSP mRNA levels
were quantified in the
highlighted mouse organs
of 10-week-old, sex-
matched DSPDIEC (DIEC)
and DSPfl/fl (fl/fl) mice by
real-time reverse-tran-
scription polymerase chain
reaction and shown as dot
plots (n ¼ 3). The L7
(mouse ribosomal protein)
gene was used as an in-
ternal control. Average
mRNA expression in fl/fl
mice was set arbitrarily as
1 and levels in DIEC mice
are presented as a ratio. A
2-tailed Student t test was
used for statistical ana-
lyses. ***P < .001. Similar
results were obtained in
male and female mice.
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unaltered colon architecture and a comparable amount of
goblet cells in all analyzed genotypes. The latter observation
was confirmed by similar mRNA expression of the goblet
cell marker mucin 2 (Figure 10B). Furthermore, no inflam-
mation was noted as shown by similar levels of proin-
flammatory cytokines (Figure 10C). Gavage with 4
kilodaltons FITC-labeled dextran showed only a moderate
increase in intestinal permeability (Figure 10D). To test the
importance of Dsp during intestinal stress, we challenged
DSPDIEC mice and their floxed littermates with DSS.
Compared with DSPfl/fl mice, DSPDIEC animals experienced
increased weight loss with profound fecal bleeding and a
significantly reduced colon length (Figure 11A–C). Histologic
examination showed massive tissue destruction in DSS-
treated Dsp-deficient mice with marked epithelial cell loss,
edema, and inflammatory cell infiltration that translated
into increased injury scores (Figure 11D). The profoundly
FLA 5.6.0 DTD � JCMGH936 proof � 3
intensified inflammation was corroborated by increased
levels of the analyzed proinflammatory cytokines
(Figure 11E).

Given that Dsp mediates the connection between des-
mosomes and keratin intermediate filaments, we assessed
the consequences of Dsp loss on keratin organization. Under
basal conditions, DSPDIEC and DSPfl/fl mice showed similar
mRNA and protein levels of K7, K8, K18, and K19
(Figure 12A and B). No differences in K8 solubility were
noted (Figure 12C). In line with that, phosphorylation of K8
at S79 and S432 did not differ significantly among the
phenotypes (Figure 12C and data not shown). To better
delineate keratin network organization in vivo, DSPDIEC and
DSPfl/fl mice were cross-bred with knock-in animals
expressing the YFP-tagged version of K8.19 Confocal laser
scanning microscopy showed a normal-appearing K8
network in the colon and jejunum of DSPfl/fl mice, with K8
470
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Figure 3. DSP-deficient animals (DSPDIEC) showed no
alterations in the expression of desmosomal compo-
nents. The impact of Dsp loss on colonic desmosomal
composition was analyzed in 10-week-old, sex-matched
DSPDIEC (DIEC) mice and their floxed littermates (fl/fl) by
real-time reverse-transcription polymerase chain reaction
(n ¼ 6) and shown as dot plots. The L7 (mouse ribosomal
protein) gene was used as an internal control. Average mRNA
expression in fl/fl mice was set arbitrarily as 1 and levels in
DIEC mice are presented as a ratio. Similar results were ob-
tained in male and female mice. Pkp2, plakophilin 2.
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being located in close contact with the plasma membrane.
Loss of Dsp resulted in a retracted network that became
apparent as a wider distance between the keratin rings, and
Figure 4. DSP-deficient animals (DSPDIEC) developed norma
basal conditions. (A) The body weights, as well as colon an
DSPDIEC (DIEC) mice and their floxed littermates (fl/fl) are show
mor necrosis factor a (TNFa), IL1b, and IL6 were assessed in
transcription polymerase chain reaction (n ¼ 3). The L7 (mou
Average mRNA expression in fl/fl mice was set arbitrarily as 1 an
were obtained in male and female mice.

FLA 5.6.0 DTD � JCMGH936 proof � 3
was even more pronounced in the jejunum (Figure 13A–C).
To further explore keratin distribution in rapidly growing
intestinal epithelia, we turned to small intestinal organoids.
Although the loss of Dsp did not visibly alter the growth and
development of the organoids, a dramatic disruption of the
keratin network occurred in DSPDIEC organoids. They
showed a profoundly disorganized, collapsed network
(Figure 13D), which was in strong contrast to the cortical
pattern seen in DSPfl/fl organoids.

Given the known importance of keratins for mechanical
stability, we compared the mechanical resilience of wild-
type colorectal carcinoma–derived HT29 Qcells and HT29
cells with a deleted Dsp exon 8 (DDSP). The complete loss of
Dsp was confirmed on both the mRNA and protein level
(Figure 14A and B), and the efficient expression of the tar-
geting vector was corroborated by the incorporated green
fluorescent protein (GFP) fluorescence (Figure 14C). No
changes in cell growth or morphology compared with wild-
type (WT) HT29 cells were observed (Figure 14C and not
shown). An inconspicuous cellular monolayer was seen in
DDSP cells by H&E and phalloidin stainings (Figure 15A and
data not shown). Immunofluorescence staining showed an
unperturbed localization of the desmosomal cadherin Dsg2
(Figure 14D). Nevertheless, mechanical stress resulted in a
more profound fragmentation of the epithelial sheets in
Dsp-deficient cells compared with their WT counterparts
lly and showed no obvious intestinal inflammation under
d small intestinal (SI) lengths of 10-week-old, sex-matched
n as dot plots (n ¼ 7–9). (B) The inflammatory cytokines tu-
the colon and jejunum of both groups by real-time reverse-
se ribosomal protein) gene was used as an internal control.
d levels in DIEC mice are presented as a ratio. Similar results
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Figure 5. Loss of Dsp
leads to increased intes-
tinal permeability. (A) H&E
staining highlights the
overall colon morphology
in 10-week-old, sex-
matched DSPDIEC (DIEC)
mice and their floxed litter-
mates (fl/fl). Scale bar: 100
mm. (B) Desmosomal ultra-
structure was assessed in
both groups by electron
microscopy. Scale bar: 100
nm. (C) Serum levels of
4-kilodalton FITC-dextran
were quantified in
10-week-old, sex-matched
mice 4 hours after the
gavage (n ¼ 4). The data
are represented as dot
plots. A 2-tailed Student
t test was used for statisti-
cal analyses. *P < .05.
Similar results were ob-
tained in male and female
mice.
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Figure 6. DSP-deficient animals (DSPDIEC) showed an accelerated epithelial migration and a higher epithelial loss.
(A) Ten-week-old, sex-matched DSPDIEC (DIEC) mice and their floxed littermates (fl/fl) were injected with BrdU and the amount
of BrdU-positive cells was quantified 24 hours later (n ¼ 11). Scale bar: 200 mm. (B) Immunoblotting for the epithelial cell
marker K8 in the colonic luminal content of 10-week-old, sex-matched mice was performed as a marker of epithelial extrusion
(n ¼ 4). Coomassie staining was used as a loading control. A 2-tailed Student t test was used for statistical analyses. **P < .01.
Similar results were obtained in male and female mice.
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Figure 7. DSP-deficient animals (DSPDIEC) showed no abnormalities in cellular differentiation. mRNA levels of secretory
lineage markers Atoh1/Hes1 and cell maturation markers Gfi1/Spdef were quantified in the (A) colon and (B) jejunum of 10-
week-old, sex-matched DSPDIEC (DIEC) and DSPfl/fl (fl/fl) mice by real-time reverse-transcription polymerase chain reaction
(n ¼ 5–6). The L7 (mouse ribosomal protein) gene was used as an internal control. Average mRNA expression in fl/fl mice was
set arbitrarily as 1 and levels in DIEC mice are presented as a ratio. All data are represented as dot plots. Similar results were
obtained in male and female mice.
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(Figure 14E). Similarly, uniaxial cyclic cell stretching led to a
more obvious monolayer disruption in DDSP vs WT cells
(Figure 14F). Moreover, Dsp-deficient cells showed a
stronger release of the cellular damage marker lactate de-
hydrogenase into the cell supernatant (Figure 14F). In
contrast, loss of Dsp did not affect the wound healing
response determined by a scratch assay (Figure 15B). In
summary, our results show that Dsp is largely dispensable
in unstressed intestinal epithelia, but it is crucial for keratin
network organization, cellular adhesion, and tissue integrity,
and thereby for coping with intestinal stress (Figure 16).
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Discussion
Our study analyzed the role of the desmosome–keratin

system in the intestine. We showed that loss of Dsp did
not influence the formation of normal-appearing desmo-
somes, which is in line with previous data.20 The fact that
Dsp is necessary for desmosomal integrity in the epidermis
but less so in the intestine17,20 suggests that it is more
important in mechanically challenged tissues. This is not
surprising because Dsp becomes mechanically loaded only
when cells are exposed to external mechanical stresses.21

Although no intestinal injury was noted, DSPDIEC mice
showed decreased Dsg2 and PG protein levels. These data
are in line with observations in Dsg2-deficient animals13

and indicate that alterations in desmosomal proteins affect
the post-translational regulation of other desmosomal
components. Similarly, cardiac-specific ablation of Dsp
resulted in decreased levels of cytosolic PG.22 Further
studies are needed to delineate the underlying molecular
mechanisms.
FLA 5.6.0 DTD � JCMGH936 proof � 3
The alterations observed in unchallenged DSPDIEC mice
included an increased intestinal permeability, a faster
migration along the crypt–villus axis, and a stronger
epithelial turnover, which indicates the importance for
epithelial adhesion. Similar findings were made after the
loss of desmosomal components Dsc2 and Dsg2, which lead
to impaired intestinal adhesion.14,15 The increased epithelial
shedding into the intestinal lumen that was observed in
DSPDIEC mice is compatible with the animals with intestine-
specific plectin deletion that show increased cellular turn-
over and a trend toward higher epithelial detachment.18

The fact that Dsp is crucial for cellular adhesion was
supported further by our in vitro studies highlighting a
higher cell mechanical fragility of Dsp-deficient cells. In
addition to Dsp, keratins constitute important mechanical
stabilizers and keratin mutations result in cellular
fragility.23 Despite that, neither an isolated Dsp loss nor a
combined deletion of Dsp and Dsg2 resulted in a sponta-
neous intestinal injury. This finding extends earlier obser-
vations13,24,25 and suggests that loss of desmosomal
proteins can be functionally compensated in unchallenged
intestinal epithelia. These rather minor functional defects
were somewhat surprising because the cross-breeding of
DSPDIEC animals with K8–YFP mice showed that Dsp loss
results in a profoundly disorganized keratin filament
network in the small and large intestine. Even stronger al-
terations were seen in the rapidly growing intestinal orga-
noids. Further studies are needed to dissect the importance
of Dsp in these situations as well as to delineate its role in
the small vs large intestine.

Collectively, these data indicate that Dsp is essential for
the tethering of keratins in these cells and cannot be
January 2022 � 7:36 pm � ce DVC



Figure 8. DSP-deficient
animals (DSPDIEC) (age,
52 wk) showed no
obvious phenotype under
basal conditions. (A) The
body weights, colon
lengths, and small intesti-
nal (SI) lengths were
analyzed in 52-week-old,
sex-matched DSPDIEC

(DIEC) and DSPfl/fl (fl/fl)
mice. The data are shown
as dot plots (n ¼ 19). (B)
H&E staining showed the
overall colonic architec-
ture. PAS staining and
Agr2 immunohistochem-
ical staining visualize the
goblet cells. Scale bar: 100
mm (C) Real-time reverse-
transcription polymerase
chain reaction quantifies
the colonic levels of the
cytokines tumor necrosis
factor a (TNFa) and IL1b
(n ¼ 6–7) as a surrogate of
inflammation. The L7
(mouse ribosomal protein)
gene was used as an in-
ternal control. Average
mRNA expression in fl/fl
mice was set arbitrarily as
1 and levels in DIEC mice
represent a ratio. Similar
results were obtained in
male and female mice.
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compensated by other cytolinkers. In line with that, Dsp
absence or mutation in keratinocytes led to a retracted
keratin network after mechanical stress.25–27 Furthermore,
it has been shown that modifications in the
keratin–desmosome interaction alter cell stiffness in human
epithelial cells.28 However, despite the lost transcellular
connection, the retained keratins still seem to fulfill
important cellular functions because the phenotype of
DSPDIEC mice is markedly less severe than the phenotype
seen in K8 knockout mice.12 Notably, keratins are multi-
functional proteins fulfilling various nonmechanical
FLA 5.6.0 DTD � JCMGH936 proof � 3
functions,2,29,30 and these retained functions likely are
responsible for the comparably mild phenotype of DSPDIEC

animals. Finally, our data show that desmoplakin is more
dispensable than its related cytolinker plectin because in-
testinal deletion of plectin led to spontaneous colitis.18 This
is not surprising because plectin fulfills a much broader
spectrum of functions than desmoplakin and its deletion
results in dysfunctional hemidesmosomes and intercellular
junctions18 that are not affected by desmoplakin loss. On the
other hand, deletion of epiplakin, a cytolinker with more
restricted cellular junctions, did not lead to an obvious
January 2022 � 7:36 pm � ce DVC
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Figure 9. DSG2/DSP-deficient animals (DDsg2/Dsp)
showed an intestine-specific Dsg2 and Dsp loss. The
colonic levels of the depicted proteins were assessed in
DSG2DIEC (DDsg2) or DSPDIEC (DDsp) single-knockout, DSG2/
DSPDIEC (DDsg2/Dsp) double-knockout mice and their floxed
littermates (fl/fl) by immunoblotting (n ¼ 3–5). b-tubulin (Tub)
was used as a loading control. Similar results were obtained in
male and female mice.
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intestinal phenotype either.31 Although the moderate in-
testinal permeability seen in untreated DSPDIEC animals is
not sufficient to induce epithelial injury, it may promote the
disruption of the intestinal barrier during DSS colitis. As an
underlying mechanism, proinflammatory cytokines are
known to weaken the epithelial junctions32 and thereby
may perpetuate the vicious cycle of disturbed epithelial
barrier and injury.33 A similar mechanism was postulated in
DSG2DIEC mice13 and multiple cellular models.34,35

In summary, our findings support an important role of
Dsp for epithelial tissue integrity. Because its loss results in
impaired attachment of keratins to desmosomes as well as
alterations in desmosomal protein levels, Dsp seems to be
important for both. Although desmosomal proteins are
dispensable under basal conditions, they may constitute an
important second line of defense during intestinal stress.
Previous data from patients with idiopathic pulmonary
fibrosis suggest that decreased expression of Dsp caused
by intronic variant rs2076295 may predispose to devel-
opment of injury in single-layered epithelia.11 Together
with our data, these findings should spur a systematic
analysis of this variant in individuals with digestive
disorders.

Materials and Methods
Mouse Experiments

Mice with intestine-specific deletion of Dsp and Dsg2, as
well as combined deletion of both genes (DDsg2/Dsp), were
generated by crossing previously described DSG2 exons 4/5
floxed (DSG2fl/fl) and DSP exon 2 floxed (DSPfl/fl) mice with
animals expressing Cre under the control of the villin pro-
motor (DSG2DIEC/DSPDIEC).13,20 DSPDIEC animals were
further cross-bred with previously described K8–YFP
knock-in mice.19 All mice were on a C57BL/6 background,
were co-housed, and kept under standardized conditions
(12 hours day/night cycle; 21�C–24�C; humidity, w50%)
FLA 5.6.0 DTD � JCMGH936 proof � 3
with free access to food and water. To induce colitis,
10-week-old sex-matched mice were exposed to 2% DSS
(MP Biochemicals, Heidelberg, Germany) in drinking water
for 5 days followed by a switch to normal water. The ani-
mals were killed with an isoflurane overdose on day 7.
Untreated, co-housed, age- and sex-matched littermates
were used as controls. Rectal Qbleeding was evaluated using
a commercial hemoCARE fecal occult blood Guajak Qtest.
Semiquantitative scoring from 0 to 3 (0, no bleeding; 1, mild
bleeding; 2, moderate bleeding; and 3, severe bleeding) was
performed. All intestinal parts were washed with 1�
phosphate-buffered saline (PBS). Proximal parts were
stored as Swiss rolls in 4% formaldehyde overnight for
histologic evaluation or frozen in OCT compound (Tissue-
Tek; Sakura, Staufen, Germany) for cryosectioning. Distal
parts and samples from other organs were snap-frozen in
liquid nitrogen for protein and RNA analysis. To examine
intestinal permeability, mice were fasted for 3 hours and
subsequently gavaged with 0.6 mg/g of body weight
4-kilodalton QFITC-labeled dextran (Sigma-Aldrich, Stein-
heim, Germany). Four hours later, blood was collected ret-
roorbitally and the fluorescence intensity in serum was
quantified (excitation, 492 nm; emission, 525 nm; Cytation3
imaging reader; BioTek, Bad Friedrichshall, Germany). The
samples were prepared in duplicates and the results were
calculated according to the standard curve. To label prolif-
erating cells, 50 mg/g of body weight BrdU (Sigma-Aldrich)
was injected intraperitoneally.

Generation of Organoids From Isolated Small
Intestinal Stem Cells

Small intestines were removed, washed with ice-cold
PBS, and cut into 3-cm–long pieces that were opened
longitudinally. The villi were scraped off with a coverslip
and the remaining tissue fragments were washed with PBS.
Afterward, they were incubated in 1 mmol/L EDTA/PBS
solution for 30 minutes at 4�C on a tube roller and trans-
ferred to 5 mmol/L EDTA/PBS for 1 hour at 4�C to enrich
for small intestinal crypts. The crypt-containing solution
was filtered through a 70-mm cell strainer, the crypts were
counted, and centrifuged at 300 � g for 5 minutes at 4�C.
The crypt-containing pellet was resuspended in a Matrigel
matrix (Corning, Kaiserslautern, Germany) and seeded into
a prewarmed 48-well plate. Matrigel was allowed to poly-
merize for 15 minutes at 37�C and the crypts were over-
layed with Advanced Dulbecco’s modified Eagle medium/
F12 supplemented with 1% Glutamax, 1% 1 mol/L HEPES,
and 1% penicillin/ streptomycin, containing 1� N2, 1� B27
supplement (both from Invitrogen Q), 1.25 mmol/L n-ace-
tylcysteine (Sigma-Aldrich), 0.05 mg/mL mEGF Q(Invitrogen),
0.1 mg/mL mNoggin (Peprotech), and 1 mg/mL recombinant
hRspondin1 (R&D Systems). The medium was changed
every 3 days and the development was recorded with the
EVOS FL Cell Imaging System (Thermo Scientific).

Biochemical Methods
To obtain the luminal content, the colon was removed

and opened longitudinally. The tissue was vigorously
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Figure 10. DSG2/DSP-deficient animals (DDsg2/Dsp) showed no obvious basal phenotype, but showed an increase in
intestinal permeability. (A) The body weights and colon/small intestinal (SI) lengths of 28-week-old, sex-matched double-
knockout DSG2/DSPDIEC (DDsg2/Dsp) mice, single-knockout DSG2DIEC (DDsg2) and DSPDIEC (DDsp) animals, as well as their
floxed littermates (fl/fl) were measured (n ¼ 11–12). (B) The colonic architecture was assessed after H&E staining. PAS staining
shows the goblet cells. The expression of the goblet cell product mucin 2 (MUC2) was quantified by real-time reverse-tran-
scription polymerase chain reaction (n ¼ 5–6). Scale bars: 100 mm. (C) The levels of inflammatory cytokines tumor necrosis
factor a (TNFa) and IL1b in colonic tissues were evaluated in 28-week-old, sex-matched mice by real-time reverse-tran-
scription polymerase chain reaction (n ¼ 5). The L7 (mouse ribosomal protein) gene was used as an internal control. Average
mRNA expression in fl/fl mice was set arbitrarily as 1 and levels in other genotypes represent a ratio. (D) Serum levels of
4-kilodalton FITC dextran were measured in 28-week-old DDsg2/Dsp animals and the corresponding floxed mice 4 hours after
the gavage (n ¼ 3–4). Average FITC dextran level in fl/flmice was set arbitrarily as 1 and levels in DIEC mice were presented as
a ratio. All data are represented as dot plots. Similar results were obtained in male and female mice.
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inverted 20 times in 1� PBS. The solution was centrifuged
at 5000 rpm for 10 minutes at 4�C, and the pellet was ho-
mogenized in 3% sodium dodecyl sulfate (SDS)-containing
buffer supplemented with protease and phosphatase in-
hibitors. The protein content of the obtained luminal lysates
was determined by Coomassie brilliant blue staining. Total
protein lysates were prepared by direct homogenization of
murine tissues or HT29 cells in an appropriate volume of
3% SDS-containing buffer. Insoluble keratin extracts were
generated via high-salt extraction. Briefly, colonic tissue was
homogenized in ice-cold 1% Triton-X buffer and centrifuged
to obtain the supernatants constituting the soluble fraction.
The pellet was homogenized in high-salt buffer (10 mmol/L
Tris, pH 7.6; 140 mmol/L NaCl, 1.5 mol/L KCl; 5 mmol/L
FLA 5.6.0 DTD � JCMGH936 proof � 3
EDTA in 0.5% Triton-X) and washed to remove nucleic acids
before being dissolved in 3% SDS-containing Laemmli
buffer (Strnad Qet al, 2016). The same amounts of proteins
were separated by SDS-polyacrylamide gel electrophoresis
followed by transfer to polyvinylidene difluoride mem-
branes. The membranes were incubated with specific pri-
mary and horseradish-peroxidase–coupled secondary
antibodies. Finally, antigen–antibody complexes were visu-
alized by an enhanced chemiluminescence detection kit (GE
Healthcare/Amersham Biosciences Q, UK). The relative pro-
tein amounts were quantified by densitometry via ImageJ
software (National Institutes of Health, Bethesda, MD) and
depicted as optical density values. The antibodies used are
summarized in Table 1.
1178
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Figure 11. DSP-deficient animals (DSPDIEC) showed an enhanced susceptibility toward DSS-induced colitis. (A) Relative
body weights of 10-week-old, sex-matched DSPDIEC (DIEC) (grey rectangles) and DSPfl/fl (fl/fl) mice (black circles, n ¼ 6 each)
were evaluated daily starting at the day of first DSS administration (day 0). (B–D) Seven days after the first DSS administration,
the severity of colitis was assessed by measuring colonic length (n ¼ 6), semiquantitative scoring of stool blood content with
guaiac test (n ¼ 5), and H&E staining of colon sections with histologic scoring (n ¼ 6). Scale bar: 100 mm. (E) To assess colonic
inflammation, cytokines tumor necrosis factor a (TNFa), IL1b, and IL6 were quantified by real-time reverse-transcription po-
lymerase chain reaction (n ¼ 4–5). The cytokine expression in nontreated animals (ctrl) was set arbitrarily as 1. The L7 (mouse
ribosomal protein) gene was used as an internal control. A 2-tailed Student t test was used for statistical analyses. *P < .05,
**P < .01, ***P < .001. The data are represented as dot plots. Similar results were obtained in male and female mice.
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Histologic Analysis
Formaldehyde-fixed tissues were embedded in paraffin,

cut into 3-mm–thick sections, and deparaffinized for H&E
and PAS staining. For the latter, slides were oxidized in 2%
periodic acid solution for 5 minutes. After washing in
distilled water, Schiff reagent was applied for 15 minutes,
followed by hematoxylin counterstaining. Subsequently, the
sections were blued in 1 mol/L Tris buffer (pH 8.0). All
images were acquired and examined with a Zeiss light mi-
croscope and AxioVision Rel 4.8 software (Zeiss, Jena, Ger-
many). PAS-positive cells were counted and presented as a
mean from at least 20 assessed crypts per mouse by ImageJ
software. H&E-stained, DSS-treated sections were evaluated
by a previously described scoring system with minor mod-
ifications (reference): (1) submucosa thickening/edema, (2)
inflammatory cell infiltration, (3) goblet cell loss
FLA 5.6.0 DTD � JCMGH936 proof � 3
(each parameter with a score of 0 to 3, as follows: 0, normal;
1, mild; 2, moderate; and 3, severe), (4) epithelial damage/
erosion (0, normal; 2, <1/3 of total area with altered
epithelial cell morphology; 4, >1/3 of total area with altered
epithelial cell morphology and/or mild erosions; 6, <10% of
ulcerative areas; 8, 10%–20% of ulcerative areas, 10, >20%
of ulcerative areas). Analysis was performed in a blinded
manner by P.B. (certified pathologist) and A.G.
Immunohistochemistry
Immunohistochemistry staining and visualization of

BrdU and Agr2 was performed on paraffin specimens, which
were cut into 5-mm–thick sections. Deparaffinized slides
were boiled in citrate-based antigen unmasking solution at
pH 6 (Vector Laboratories, Burlingame, CA). Before blocking
January 2022 � 7:36 pm � ce DVC
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Figure 12. Loss of DSP does not affect the expression and solubility of keratins. (A and B) The mRNA and protein levels of
K7, K8, K18, and K19 were assessed in the colons of 10-week-old, sex-matched DSPDIEC (DIEC) mice and their floxed lit-
termates (fl/fl) by real-time reverse-transcription polymerase chain reaction (n ¼ 3) and immunoblotting (n ¼ 6). (C) K8 solubility
in 1% Triton X–containing buffer was evaluated in the colon of both groups by immunoblotting and subsequent densitometric
quantification. The K8 optical density (OD) values were normalized to the OD values of b-actin (n ¼ 5). Average levels in fl/fl
mice were set arbitrarily as 1 and the amounts in DIEC mice were presented as a ratio. The L7 (mouse ribosomal protein) gene
and (B) b-tubulin and (C) b-actin were used as an internal and loading control Q41, respectively. The data are shown as dot plots.
A 2-tailed Student t test was used for statistical analyses. Similar results were obtained in male and female mice.
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in 5% normal goat serum in PBS for 30 minutes, sections
were incubated with 3% H2O2 for 10 minutes to reduce the
endogenous peroxidase activity. For BrdU staining, an
additional treatment with 2 N HCl for 30 minutes was
performed to denature DNA, followed by neutralization with
0.1 mol/L sodium borate (pH 8) for 9 minutes. Afterward,
samples were incubated with anti-BrdU or anti-Agr2 anti-
body overnight at 4�C. After washing, a species-specific
biotinylated secondary antibody (Vector Laboratories) was
applied for 1 hour, after incubation with Vectastain working
solutions (Vectastain ABC Kit; Vector Laboratories). 3,3’-
diaminobenzidine (Vector Laboratories) was used to
develop staining and hematoxylin was applied as a coun-
terstain. BrdU-positive cells were counted as a mean from at
least 20 different crypts per mouse.

Immunofluorescence Staining
Immunofluorescence staining was performed on frozen,

OCT-embedded tissues cut into 5 -mm–thick sections or
HT29 cells grown on glass slides (354114, 4 wells; Falcon,
Kaiserslautern, Germany). Tissue specimen and cells were
fixed in precooled acetone or precooled methanol for
FLA 5.6.0 DTD � JCMGH936 proof � 3
10 minutes, respectively. Blocking was performed for 1 hour
in 2% normal goat serum, 1% bovine serum albumin (BSA),
0.1% cold fish skin gelatine Q, 0.1% Triton X-100, 0.05%
Tween 20 in 1� PBS (tissue) or 2% BSA in PBST Q(cells).
Subsequently, samples were incubated with the following
antibodies overnight at 4�C: anti-Dsg2, anti-Dsc2 (AG Leube,
RWTH Aachen, Aachen, Germany),13 anti-Dsp (CBL173;
Millipore, Darmstadt, Germany) and anti–g-catenin (Plako-
globin) (sc30997 K-20; Santa Cruz, Heidelberg, Germany).
After washing, specimens were subjected to anti-goat Alexa-
Fluor 488/568–conjugated secondary antibodies (Invi-
trogen, Molecular Probes, Eugene, OR) for 1 hour at room
temperature and mounted with ProLong Gold antifade re-
agent containing 40,6-diamidino-2-phenylindole (P36935;
Thermo Scientific GmbH, Schwerte, Germany). Images were
acquired with a Zeiss microscope Axio Imager Z1 (Zeiss).

Quantitative Real-Time Polymerase Chain
Reaction

Total RNA was isolated from tissues and HT29 cells
using the RNeasy Mini Kit (Qiagen, Hilden, Germany) ac-
cording to the manufacturer’s instructions. A total of 1 mg
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Q31

Figure 13. DSP-deficient
animals showed an
altered keratin network
organization. (A–C) K8
structure was evaluated in
the colon and jejunum of
10-week-old, sex-matched
Dsp-deficient mice (DIEC)
and their floxed littermates
(fl/fl) producing YFP-
tagged K8, with subse-
quent quantification of the
distance between the ker-
atin rings from individual
epithelial cells (n ¼ 19–37).
Hoechst was used as a
nuclear counterstain. Scale
bars: 10 mm (colon); 5 mm
(jejunum). The quantifica-
tion is represented as dot
plots. (D) Organoids were
grown from small intestinal
stem cells of both geno-
types and assessed at
days 2 and 4 of culture by
H&E staining. The organi-
zation of the keratin
network was visualized by
fluorescence microscopy
(FL). Scale bars: 100 mm
(H&E); 20 mm (fluorescent
image). A 2-tailed Student
t test was used for statis-
tical analyses. **P < .01,
****P < .0001. Similar re-
sults were obtained in male
and female mice.
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RNA was reverse-transcribed into complementary DNA with
the M-MLV Reverse Transcriptase Kit (Promega, Mannheim,
Germany) and quantitative real-time reverse-transcription
polymerase chain reaction was performed using the 7300
Fast Real-Time Polymerase Chain Reaction System (Applied
Biosystems). All samples were measured in duplicate and
quantified with the DDCt method in relation to the internal
control (ribosomal protein L7). The primers used in the
FLA 5.6.0 DTD � JCMGH936 proof � 3
experiments are summarized in Table 2. All expression
levels are represented as means ± SEM.
Transmission Electron Microscopy
Colonic tissue was cut into w1 mm3 pieces and fixed at

room temperature with the following 3 fixatives: (1) 3.7%
formaldehyde, 1% glutaraldehyde, 11.6 g NaH2PO4xH2O and
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33

Figure 14. DSP loss re-
sults in epithelial fragility.
(A and B) Dsp mRNA and
protein levels were
assessed in Dsp-deficient
(DDSP) and WT HT29
cells by real-time reverse-
transcription polymerase
chain reaction and immu-
noblotting (n ¼ 3). The
hRPLPO gene and b-actin
were used as an internal
and loading control,
respectively. (C) Auto-
fluorescence of green
fluorescent protein incor-
porated in the Dsp target-
ing construct was used to
visualize the transduction
efficiency. Scale bar: 100
mm. (D) The distribution of
Dsp and Dsg2 was
analyzed by immunofluo-
rescence. Scale bar:
20 mm. (E and F) Epithelial
adhesion was assessed by
a dispase test with subse-
quent quantification of the
number of epithelial sheet
fragments (n ¼ 3) and by
10 hours of cyclic stretch-
ing of cell monolayers in
silicone chambers. Cells
were visualized before
stretch and after stretch by
bright-field microscopy.
Scale bar: 200 mm.
L-Lactate Q42dehydrogenase
(LDH) was measured to
determine the extent of
cellular damage (n ¼ 5–6).
A 2-tailed Student t test
was used for statistical
analyses. *P < .05, ***P <
.001. BF, bright-field; FL,
fluorescence; nr, number.
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2.7 g NaOH per liter ddH2O for 2 hours; (2) 1% OsO4 for 1
hour; and (3) 0.5% uranylacetate/0.05 N sodium hydrogen
maleate (pH 5.2) for 2 hours. Subsequently, samples were
dehydrated, embedded in araldite for 48 hours at 60�C, and
cut into 75-nm ultrathin sections. To enhance the contrast,
sections were treated with 3% uranylacetate for 4 minutes
and with 80 mmol/L lead citrate for 3 minutes. Images were
acquired with an EM 10 (Zeiss) plus digital camera
FLA 5.6.0 DTD � JCMGH936 proof � 3
(Olympus Q) and the corresponding iTEM software
(Olympus).
Ex Vivo Microscopy
Colons and jejuna from DSPDIEC/K8–YFP knock-in mice

were flushed with PBS, opened longitudinally, and trans-
ferred to glass-bottom dishes (MatTek Q) containing
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Figure 15. DSP-deficient animals (DSPDIEC) showed no
alterations in wound healing. (A) Monolayer formation was
confirmed via H&E staining in Dsp-deficient (DDSP) and WT
HT29 cells. Scale bars: 20 mm. (B) Cell migration was
assessed by wound healing assay with subsequent quantifi-
cation of the wound closure area (%) after 48 hours in both
groups (n ¼ 5). Cells were visualized 24 and 48 hours after
wound scratching by bright-field microscopy. Scale bars: 200
mm. The data are represented as dot plots. A 2-tailed Student
t test was used for statistical analyses.
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prewarmed Krebs–Henseleit buffer (114 mmol/L NaCl, 5
mmol/L KCl, 24 mmol/L NaHCO3, 1 mmol/L MgCl2, 2.2
mmol/L CaCl2, 10 mmol/L HEPES, 0.25% BSA, pH 7.35). A
FLA 5.6.0 DTD � JCMGH936 proof � 3
total of 2.5 mg/mL Hoechst33342 was added for staining of
the nuclei in colonic tissue. Organoids were grown on glass-
bottom dishes and overlayed with the Hoechst33342-
containing Krebs–Henseleit buffer. Images were acquired
with a Zeiss LSM710 Duo microscope, a 405-nm diode laser,
an argon ion laser at 488 nm, and a 63�/1.4 NA QDIC M27 oil
immersion objective at 37�C. In addition, the Airyscan Qde-
tector in super-resolution mode was used. Images were
deconvoluted using Zen black software (Zeiss) and pro-
cessed using Fiji.36 The distance between the keratin rings
of individual cells was quantified via Fiji.
Cell Culture Experiments
A human colon adenocarcinoma cell line (HT29, ATCC

HTB-38; LGC Standards GmbH, Wesel, Germany) with a
stable DSP knockdown was generated using the CRISPR/
Cas system.37 Briefly, short guide RNA, which targets exon
8 of the DSP gene (for additional information see Table 2),
was designed using the Broad QInstitute platform and inte-
grated into the vector pL-CRISPR.EFS.GFP (Addgene Q, MA)
for lentiviral delivery. The construct was amplified in
competent Stbl3 Escherichia coli (Invitrogen) and the
GeneJET plasmid miniprep and maxiprep kits were used
for its isolation (Thermo Scientific). For the production of
lentiviral particles, HEK293T cells were co-transfected
with lentiviral envelope plasmid (pMD2.G; Addgene
Europe, Teddington, UK), packaging plasmid (psPAX2;
Addgene Europe), and the previously generated vector
using TransIT-LT1 transfection reagent (Mirusbio, Goet-
tingen, Germany). After 48 hours, the lentiviral particles
were collected by centrifugation of the cell culture super-
natant at 1500 rpm for 5 minutes and filtration with a
45-mm pore size filter. Finally, target HT29 cells were
transduced with the isolated particles. Fluorescence-
activated cell sorting was used to select transfected, GFP-
expressing cells. HT29 cells were cultured in a complete
culture medium (RPMI 1640; PAN Biotech, Bavaria, Ger-
many) containing 10% fetal bovine serum and 1%
(50 U/mL) penicillin-streptomycin (PAN biotech) in a 5%
CO2 atmosphere at 37�C until they reached confluence. For
H&E staining, WT and GFP-expressing Dsp-deficient HT29
cells were seeded on chamber slides (Thermo Scientific)
and fixed in 4% paraformaldehyde. Images were acquired
with an Axio Vert.A1 (Zeiss).
Dispase Assay
Dsp-deficient and WT HT29 cells were seeded into

6-well plates. After reaching confluency, cells were
washed in PBS and Hank`s balanced salt solution (P04-
34500; PAN Biotech). Afterward, incubation with
3.6 U/mL dispase II in Hank`s balanced salt solution
(Roche, Mannheim, Germany) at 37�C for 30 minutes was
performed to release cellular monolayers from the plate
bottom. The epithelial sheets were subjected to mechani-
cal stress by inversion on a tube rotator (444-0500; VWR Q)
for 5 minutes at 18 rpm and the resulting fragments were
counted by an ImageQuant AS 4000 camera system
1768
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Q39

Figure 16. Schematic
summarizing the findings
of the study. Dsp- and
Dsg2/Dsp-deficient mice
showed no basal pheno-
type, but an increased
permeability, epithelial loss
into the intestinal lumen,
and faster migration. In
DSPDIEC mice, treatment
with DSS lead to increased
intestinal injury with strong
inflammatory response.
Cross-breeding with K8–
YFP knock-in mice and
assessment of the tissues
as well as small intestinal
organoids showed a
collapsed keratin network
with loss of desmosomal
anchorage. Dsp knock-
down in vitro resulted in
susceptibility to mechani-
cal injury and impaired cell
adhesion.
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equipped with ImageQuant software (GE Healthcare
Europe GmbH, Freiburg, Germany).

Cell Stretching
To perform cyclic stretch experiments, 0.3 � 106 Dsp-

deficient or WT HT29 cells were seeded on elastic poly-
dimethylsiloxane chambers (silicone elastomers, SYLGARD,
184; Dow Chemical Company, MI) that were coated with
100 mg/mL fibronectin. After reaching more than 80%
confluence, chambers were placed into an automatic cell
chamber stretcher and a simultaneous, linear, uniaxial
Table 1.Antibodies Used for Western Blot

Antibody Host

Anterior gradient 2 (EPR20164-278) Rabbit a

Desmocollin 2 Guinea pig In

Desmoglein 2 Rabbit In

Desmoplakin I/II Rabbit s

Desmoplakin I/II (clone DP 2.15) Mouse C

Keratin 7 (RCK105) Mouse a

Keratin 8 (clone Ks.8.7) Mouse 6

Keratin 8 (S79) Mouse L

Keratin 18 (clone Ks 18.04) Mouse 6

Keratin 19 (TROMAIII) Rat D

Plakophilin 2 Goat a

b-actin Mouse A

b-tubulin Mouse T

g-catenin (PG) Goat s

FLA 5.6.0 DTD � JCMGH936 proof � 3
stretch with 35% stretching strength and a frequency of
0.3 Hz was conducted for 10 hours.38 To analyze the
impact of stretching on cellular adhesion, monolayers were
examined by bright-field microscopy before and after
stretching. To quantify the extent of cellular damage,
lactate dehydrogenase levels were measured in the
supernatant.

Wound Healing Assay
Dsp-deficient and WT HT29 cells were seeded into 12-

well plates. After reaching confluency, a pipette tip was
Company

b209224; Abcam, Cambridge, UK

stitute of Molecular and Cellular Anatomy, RWTH Aachen, Germany

stitute of Molecular and Cellular Anatomy, RWTH Aachen, Germany

c33555 (H-300); Santa Cruz

BL173; Millipore

b9021; Abcam

1038; Progen, Heidelberg, Germany

J4 Q43; Omary et al, 1997

1028; Progen

evelopmental Q44Studies Hybridoma Bank

b189323

2228; Sigma-Aldrich

8328; Sigma-Aldrich

c30997 (K-20); Santa Cruz
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used to scratch a wound (straight line) into the cell mono-
layer followed by a washing step in 1� PBS to remove de-
tached cells. To analyze cell migration, wound closure was
tracked by bright-field microscope before and 24/48 hours
after scratching. Surface area measurements (wound
closure %) were conducted via ImageJ software.
Table 2.Primers Used for Genotyping, Quantitative Real-Time

Genotyping polymerase chain reaction primer
mDsg2 Forward

Reverse
mDsp Forward

Reverse
mVillin-Cre Forward

Reverse
mK8YFP Forward

Reverse

Quantitative real-time polymerase chain reaction primer
mutE4/E5-mDsg2 Forward

Reverse
mDsc2 Forward

Reverse
mPG/JUP Forward

Reverse
mDSP Forward

Reverse
mPkp2 Forward

Reverse
mK7 Forward

Reverse
mK8 Forward

Reverse
mK18 Forward

Reverse
mK19 Forward

Reverse
mMuc2 Forward

Reverse
mSpdef Forward

Reverse
mGfi1 Forward

Reverse
mAtoh1 Forward

Reverse
mHes1 Forward

Reverse
mTNFa Forward

Reverse
mIL1b Forward

Reverse
mIL6 Forward

Reverse
mL7 Forward

Reverse

CRISPR/Cas primer
hDSP (exon 8) CAACGþ forward
NM_001008844 AAAC þ reverse

h, human; m, mouse.

FLA 5.6.0 DTD � JCMGH936 proof � 3
Study Approval
The animal experiments were approved by the state of

North Rhine-Westphalia in Germany and the University of
Aachen Animal Care Committee and were conducted in
compliance with the German Law for Welfare of Laboratory
Animals.
Polymerase Chain Reaction, and CRISPR/Cas

GGTAAATGCAGACGGATCAG

TGGGCTACACTCATAGGAAG
TGTCTGTTGCCATGTGATGCC Q45

GACTTGGACGATCGCCTTCTG
CCACGACCAAGTGACAGCAAT

TTCGGATCATCAGCTACACCA
ACGTAAACGGCCACA

AAGTCGTGCTGCTTC

ACCGGGAAGAAACACCATATT

AGGGCTTTTCCAGGTTGTTT
GCACTGGTCGTGTAGATCGT

CTCTGGCGTATACCCATCTG
TCCTGCACAACCTCTCTCAC

ACTGAGCATTCGGACTAGGG
CTGGCAAACGAGACAAATCA

GATGCCAGCTGCAGTTCATA
TCAGCATACACGGAAGATGC

GGGAAAGATTCCGTGACAAA
ACGGCTGCTGAGAATGAGTT

CGTGAAGGGTCTTGAGGAAG
GGACATCGAGATCACCACCT

TGAAGCCAGGGCTAGTGAGT
CAAGTCTGCCGAAATCAGGGAC

TCCAAGTTGATGTTCTGGTTTT
ACCTACCTTGCTCGGATTGA
CGTGACTTCGGTCTTGCTTA

CGTGACTTCGGTCTTGCTTA
GCTGACGAGTGGTTCGTGAATG

GATGAGGTGGCAGACAGGAGAC
CTTCATCCGCTGGCTCAACA

CGGGTTTACGAATGATGCCC
GACTCTCAGCTTACCGAGGC

TGCATAGGGCTTGAAAGGCA
AGCTTCCTCTGGGGGTTACT

TTCTGTGCCATCATCGCTGT
CTGGTGCTGATAACAGCGGA

AGGGCTACTTAGTGATCGGT
TCAGCCTCTTCTCATTCCTGCTT

AGGCCATTTGGGAACTTCTCATC
TGAAGCAGCTATGGCAACTG

GGGTCCGTCAACTTCAAAGA
ACAAAGCCAGAGTCCTTCAGAGAGA

TGGTCTTGGTCCTTAGCCACTCC
GAAAGGCAAGGAGGAAGCTCATCT

AATCTCAGTGCGGTACATCTGCCT

CTGGCAAACGAGACAAATCA
GATGCCAGCTGCAGTTCATA
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Data Analysis and Statistical Methods
Image quantifications were performed with ImageJ. Data

were analyzed with an unpaired 2-tailed Student t test or 1-
way analysis of variance. Two-tailed P values less than .05
were considered statistically significant. All authors had
access to the study data and reviewed and approved the
final manuscript.
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