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Abstract—Cell stability and motility depends on a complex
dynamic cytoplasmic scaffolding called the cytoskeleton. It is
composed of actin filaments, intermediate filaments and micro-
tubules, and interacts with neighbouring cells and the extra-
cellular matrix via specialized adhesion sites - multimolecular
complexes responsible for the transmission of mechanical force
and regulatory signals. The dynamic behaviour of these sub-
cellular structures in living cells can be analysed by fluorescence
microscopy yielding series of 2D or 3D images. Towards a
quantitative analysis, we present methods for the segmentation
and motion estimation of cytoskeletal filaments as well as for
the tracking of adhesion sites, allowing the quantification of
cytoskeletal dynamics under different conditions.

I. INTRODUCTION

The cytoskeleton (Fig. 1) consists of a complex intracellular

scaffolding that is composed of protein fibers referred to as fil-

aments. Based on their specific structural and functional prop-

erties three filament types are distinguished: actin filaments,

intermediate filaments and microtubules. The cytoskeleton is a

highly dynamic and adjustable scaffolding that is anchored to

the surrounding extracellular matrix and to neighboring cells

through distinct adhesion sites - multimolecular complexes

that participate in the transmission of mechanical force and

regulatory signals. The cytoskeleton is responsible for many

basic cell functions such as mechanical resilience, motility

Fig. 1. Fluorescence microscopy of a cell producing fluorescent keratin
intermediate filaments. The projection of 21 focal planes illustrates the dense
filamentous network in the cytoplasm. Bar 10μm.

(cell motion) and mitosis (cell division) and is involved

in various disease processes. Cytoskeletal abnormalities fre-

quently lead to disease. To better understand cytoskeleton-

related diseases and to interfere with their pathophysiology, a

precise knowledge of the plasticity of the cytoskeleton under

different physiological and pathological conditions is crucial.

The design and development of drugs capable of modulating

the cytoskeleton in specific ways will therefore lead to new

therapeutic agents. Cancer treatment provides prominent ex-

amples. Thus, by using anti-cytoskeletal (microtubule targeted)

drugs one can efficiently interfere with the abnormally high

division rate of cancer cells. This rational is the basis of some

anti-cancer chemotherapeutic regimen today.

Despite its importance for many human diseases, the cy-

toskeleton is still quite poorly understood. In order to better

understand its dynamics, quantification of the filaments’ shape,

shape deformations and motion is essential. Highly reliable

and reproducible quantification of these is only possible with

an automated analysis of the filaments. Therefore, we acquired

2D and 3D image time-series of the cytoskeleton within

living cells and developed methods for the automated analysis

of these images. The tight coupling of imaging and image

analysis is a matter of particular interest in this context as,

due to the high diversity of biological processes, there are

no standardized imaging protocols in fluorescence microscopy.

Instead, the image acquisition parameters are optimized w.r.t

the structure under investigation. In consequence, the image

analysis methods have to deal with highly variable image data.

Related work includes Quantitative Fluorescent Speckle

Microscopy by Danuser et al. [1] where speckles instead of

filaments were analyzed. In [2], the dynamics of vimentin

intermediate filaments were analyzed in 2D by a correlation-

based block matching. Furthermore, there has been work on

measuring the velocity of single actin filaments utilizing - after

denoising - an active contour-based segmentation followed by

a tracking algorithm [3]. None of these studies attempted the

computation of a dense 3-dimensional displacement vector

field to characterize the motion of both single filaments and fil-

aments integrated into a network. In [4] (and slightly extended

in [5]), a method for the segmentation of cytoskeletal filaments

has been proposed which is based on a rotated matched fil-

tering approach using a rod kernel of one-pixel width thereby
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not accounting for the width of the sought structure. For the

segmentation of line-like structures at the supracellular level,

numerous approaches have been proposed, tailored towards

applications such as vessel or neurite segmentation. See e.g.

[6] for a comparison.

In this paper, we describe the image formation process,

point out the characteristics of the image data and propose

methods for the enhancement and analysis of such images.

In particular, we introduce a method for the segmentation of

microtubules, an approach for the tracking of focal adhesions

and an algorithm for the estimation of a dense 3D motion field

of keratin intermediate filament networks.

II. FLUORESCENCE MICROSCOPIC IMAGING OF THE

CYTOSKELETON AND PREPROCESSING

Image time-lapse sequences of subcellular structures such

as cytoskeletal filaments and focal adhesions within living

cells can be acquired by labeling the proteins associated with

the structure under investigation with a fluorescent protein.

Then, the structure under investigation becomes visible under

a fluorescence microscope while all other structures remain

invisible. In the following, we will describe two common

microscopy techniques for the acquistion of image data of flu-

orescent specimens: The wide-field fluorescence microscopy

and the confocal laser scanning fluorescence microscopy for

the acquisition of 2D images and 3D images respectively.

A. 2D Imaging: Wide-Field Microscopy

In wide-field microscopy, the whole specimen is illuminated

at once and the excited fluorescence is captured by a CCD. The

image data are therefore 2D projections of 3D specimens. They

are often corrupted by high background fluorescence. Further-

more, the fluorescence intensity of the structure of interest

may vary strongly. Especially in regions where many filaments

form a dense network, they may exhibit a low intensity and in

consequence a low contrast. To analyze the structures despite

these difficulties, preprocessing is indispensable.

1) Preprocessing - Background Fluorescence Reduction
and Contrast Enhancement: To eliminate the high back-

ground fluorescence, we calculate a background estimation

and subtract it from the original image by Top-hat filtering.

Furthermore, we want to enhance contrast in dense network

regions. The filaments within such a region form a peak

in the image’s gray value histogram. Therefore, a histogram

equalization systematically leads to an enhanced constrast in

these regions.

B. 3D Imaging: Confocal Laser Scanning Microscopy

In a confocal laser scanning microscope (Fig. 2), a laser is

focused by the optics onto a point within the specimen. The

specimen starts to fluoresce at this point with a wavelength

that is larger than the wavelength of the laser. Therefore

the fluorescence is deflected at the beam splitter towards the

detector - a photomultiplier tube. To mask fluorescence that

originates from structures that are out-of-focus, an aperture

is placed in front of the detector. In this way, the whole

Fig. 2. Schema of confocal beam path.

focal plane is scanned point-wise yielding a 2D image which

represents a section of the specimen. The focal plane is then

moved to another depth of the specimen to acquire another

slice such that in the end, the whole 3-dimensional structure

of the specimen is imaged in a stack of such 2D slices which

can be composed to a 3D image.

The two most important characteristics of such a 3D image

are its spatial resolution and its SNR. The spatial resolution is

highly anisotropic as the point spread function of a confocal

laser scanning microcope limits the resolution along the optical

axis much more than the resolution within the image plane:

A voxel typically represents 60 nm in the dimensions of the

2D slices, and 500 nm in the dimension of the optical axis.

In addition, due to the low fluorescence signal, the image data

are strongly corrupted by photon counting noise.

1) Preprocessing - Poisson Noise Reduction: Photon count-

ing noise is a Poisson process. For not too small counts, a Pois-

son distribution can be approximated by a signal-dependent

Gaussian distribution. To get rid of the signal-dependence, we

stabilize the variance by computing the Anscombe transform

[7] such that the noise follows a Gaussian distribution with

approximately constant variance.

Our goal is to preserve curvi-linear structures while reduc-

ing the noise. Curvelets [8], [9] are a sparse representation

of such curvi-linear structures. After the curvelet transform,

they are represented by a small number of large coefficients

while the noise is not sparse in the curvelet domain and

Fig. 3. Curvelet-based Poisson noise reduction: Original image of keratin
intermediate filament network (left) and result of noise reduction (right).
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Fig. 4. Segmentation of microtubules in wide-field microscopic images. Top
row: Original image (left) and result of preprocessing (right). Middle row:
Ridge strength image (left) and orientation image (right). Bottom row: Result
of nonmaxima suppression (left) and binary segmentation result (right) where
red lines indicate the microtubules’ centerlines.

therefore represented by a large number of small coefficients.

In consequence, we can reduce the noise by thresholding the

curvelet coefficients. As can be seen in the result (Fig. 3),

the noise is significantly reduced while at the same time the

filaments have not been blurred.

III. IMAGE ANALYSIS OF THE CYTOSKELETON

This enhanced image data now forms the basis for our image

analysis. In this section, we illustrate the methods we have

developed for the analysis of cytoskeleton dynamics for wide-

field (2D) and confocal (3D) microscopic images.

A. 2D Segmentation of Microtubules

Recently we have proposed a method for the segmentation

of microtubules [10]. The goals of the segmentation are to first

detect all microtubules despite their highly varying intensity

and secondly to extract their centerline. The approach includes

the preprocessing of wide-field data as described in section

II-A1. The actual segmentation relies on a ridge detector

which is built from derivatives of Gaussians [11]. To segment

arbitrarily oriented ridges such as cytoskeletal filaments, we

benefit from the steerability property of this ridge detector and

Fig. 5. Tracking of focal adhesions: Detection of segmentation errors for
the spatio-temporal refinement of the segmentation [13].

analytically determine the ridge orientation which corresponds

to the maximal ridge strength for each image point. In this

way, we simultaneously obtain a ridge strength measure and

an estimate of the ridge orientation. Towards extracting the

microtubules’ centerline, we thin the ridge strength image by

suppressing nonmaxima [12]. To obtain a binary segmentation

result, this thinned ridge strength image needs to be thresh-

olded. As the high variability of the filaments’ fluorescence

is indeed significantly reduced after the preprocessing, but

not completely eliminated, a simple threshold would reject

all filaments from the final segmentation result that are dark

in the original image and in consequence have a smaller

ridge strength value than bright filaments. To keep these dark

filaments despite their small ridge strength, we benefit from

the fact that they are connected to filaments with a larger ridge

strength. A hysteresis threshold then preserves the connectivity

and leads to a satisfactory binary segmentation. Fig. 4 gives

an overview of the different steps in the segmentation.

B. 2D Tracking of Focal Adhesions

In [13], [14] we have proposed an algorithm for the tracking

of focal adhesions (FAs) in wide-field microscopic images.

It achieves a large number of consistently tracked FAs due

to the correction of segmentation errors during tracking. The

algorithm consists of eight processing steps which we will

briefly summarize in the following.

1) Foreground segmentation: The cytoplasmatic fluo-

rophore pool is removed from the image by Top-hat filtering

(see section II-A1) thus enabling the segmentation of FA

population from the background by threshold segmentation

using a threshold of 2.75% of the time series’ maximal

intensity.

In the following, adjacent, erroneously merged FAs are

separated by applying a splitting step, which leads to an

oversegmentation, and subsequently merged by incorporating

a-priori knowledge about FA shape.

2) Splitting: Each connected component is treated as one

hypothetical FA cluster. It is split up into potential individ-

ual FAs by subtraction of paths formed by pixels of near-
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Fig. 6. Tracking of focal adhesions: Segmentation gaps in the course of time
are first tolerated by the algorithm and closed in a later processing step [13].

background intensity. As only separating paths are of interest,

the obtained hypothesised background regions undergo a mor-

phological skeletonisation operation.

3) Model-based merging: Subcomponents that are part of

individual FAs are detected using a geometric FA model and

subsequently merged.

In the following four processing steps, the conditions for es-

tablishing the temporal context and refining the segmentations

are set up:

4) Temporal object linking: The data exhibit a sufficiently

high frame rate while the velocity of the FAs is low. Thus

segmented objects in adjacent time frames It and It+1 can

be linked by an overlap criterion. Yet, such a criterion can

easily be misled by segmentation errors in individual frames.

Thus the algorithm must first be tolerant against gaps in the

course of time (Fig. 6) and close them later on, deciding which

segmentation was correct and which was not. In the case of

gap frames, where no link is found, the algorithm is simply

resumed on the next adjacent time frame It+2. The number

of allowed successive gap frames was set to 6. The result of

the linking is a set of linked lists of objects, each list being a

hypothesis of a moving FA, stored along with the number of

frames from its first appearance until its last detection.

5) Gap closure 1: Taking list length as a confidence mea-

sure, correct segmentations dominate over incorrect ones and

close their gaps by appropriate reassignment of pixels using a

highest-confidence-first strategy.

6) Segmentation refinement: Each FA segmentation can

now be individually refined within a spatio-temporal, i.e.

pseudo-volumetric neighbourhood (Fig. 5).

7) Gap closure 2: In the last processing step of the tracking,

object shapes are carefully smoothed along time to further

minimise segmentation inaccuracies and close remaining gaps,

and segmentation dropouts are closed.

8) Measurements: The last step of the algorithm calcu-

lates FA parameters such as area, integrated fluorescence,

elongation, orientation and velocity. At this stage either data

from the whole FA population or from FAs within regions

of interest can be collected. As analyses are carried out on

the original images containing background fluorescence, an

object-individual background correction is performed for the

measurement of integrated fluorescence.

For the evaluation of the proposed algorithm on a time-

series of 50 frames, an expert has generated a ground truth

segmentation using ITK SNAP [15] of five representative FAs,

which differed in size, brightness and cellular location. Fea-

tures such as FA area, integrated fluorescence and elongation

have been compared to the automatically computed results

yielding very similar curves [13], [14].

C. 3D Motion Analysis of Keratin Intermediate Filaments

In this subsection, we present a method for the estimation

of a dense 3D motion field of keratin intermediate filament

networks using 3D image time sequences obtained from a

confocal laser scanning microscope. The goal is to determine

the local filament velocity for each image point.

First, to enhance the data, Poisson noise is reduced accord-

ing to section II-B1. Before we can measure local filament

motion we have to compensate for a global cell motion that

superimposes the sought local filament motion. To this end,

we register all frames using a rigid pre-registration algorithm.

Then, we estimate the local filament motion. To avoid prob-

lems with the discrete approximation of partial derivatives

in the presence of such a low spatial resolution in the third

dimension of the image data our approach is a deformable

registration algorithm. The criterion for the motion estimate

can be written as a maximum-a-posteriori estimate.

To determine the data term, we verified that the assumption

of brightness constancy holds for the temporal sampling of

the data. Under the assumption that the pool of fluorescently

labeled keratins in a single cell is stable, i.e. protein biosyn-

thesis does not take place under the experimental conditions,

the evolution of the integral fluorescence over time indicates

bleaching of the fluorescently labeled keratins. The mean

bleaching per pixel then provides a clear measure to determine

whether a matching process may be based on the assumption

of brightness constancy or whether bleaching effects have

to be taken into account. Therefore we have computed the

integral fluorescence per frame in a time series monitoring a

single cell. The difference of the integral fluorescence between

two consecutive frames represents a measure for the overall

bleaching during the time interval dt between the two frames

and the mean difference per pixel between two consecutive

frames indicates the mean bleaching per pixel occured during

dt. The mean bleaching per pixel for the whole time-series

turned out to be m = 0.556. This results clearly shows that

the brightness decrease does not play a role in a matching

process based on quantized intensity values. We may thus

assume brightness constancy.

Under the assumption that the remaining noise in the images

exhibits a Gaussian distribution, a suitable data term then

is the well known sum of squared differences (SSD). As

regularization term, we choose an elasticity model to describe
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the possible deformations of the filaments and thus enforce

the resulting motion field to be C0-continuous. Keeping in

mind the huge amount of data that has to be processed,

efficiency is an important aspect for our algorithm. Therefore,

we superimpose a deformation grid on the image and estimate

the motion only at the grid points. A subsequent interpolation

then yields a dense 3D motion field (see [16] for details).

In addition, we reformulate the MAP-criterion in terms of a

labeling problem so that it can be optimized with a discrete

optimization algorithm [17].

To evaluate the precision of our method, we have generated

synthetic data by applying known motion fields to real image

data: For the generation of the known motion fields, the image

is first thresholded using the Otsu threshold [18]. The areas

of the mask then correspond to image areas with significant

structures. A deformation grid is superimposed to the image.

The grid points contained within the mask are assigned vectors

of random orientation and random length up to 1μm. To

generate a dense motion field from the random vectors, we

apply a linear interpolation. The synthetic target image is then

produced by warping an image using the synthetic motion

field and then corrupting it with Poisson noise. The noise

has a standard deviation σ = sqrt(λ) with λ being the

measured intensity. Our synthetic sequence consists of 70

frames. As error measure, we compute the endpoint error as

the difference vector between ground truth motion vgt and

estimated motion vest: v = (vx, vy, vz)
T = vgt − vest. In

optical flow evaluation [19] it is common to compute the mean

magnitude of this difference vector. To evaluate the influence

of the anisotropic spatial resolution on the estimation error,

we calculate for each component the mean of its absolute

value: (|vx|, |vy|, |vz|)T = (38.3nm, 32.7nm, 67.1nm)T . This

result clearly shows, that the method is subvoxel-precise and

that as expected, the low resolution in the third dimension

significantly aggravates the error vector magnitude.

IV. SUMMARY AND CONCLUSIONS

Imaging and image analysis of the cytoskeleton is a chal-

lenging, newly emerging field of research. We have illustrated

two possibilities for the acquisition of images of the cytoskele-

ton within living cells. Then we have shown how this kind

of image data can be enhanced. Finally, we have presented

methods for the segmentation of microtubules and for the

tracking of focal adhesions in wide-field microscopic data as

well as an approach for the estimation of a 3D sub-voxel

precise motion field of keratin intermediate filament networks

in confocal microscopic data.

Interesting future prospects include the segmentation of the

different kinds of branchings that appear in the cytoskeleton’s

network topology and the enhancement of the spatial resolu-

tion in confocal microscopic images. Another very important

and yet challenging aspect is the reliable evaluation of seg-

mentation as well as motion analysis results.
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