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Threonine 150 Phosphorylation of Keratin 5
Is Linked to Epidermolysis Bullosa Simplex
and Regulates Filament Assembly and Cell
Viability

Mugdha Sawant1, Nicole Schwarz1, Reinhard Windoffer1, Thomas M. Magin2, Jan Krieger3,
Norbert Mücke3, Boguslaw Obara4, Vera Jankowski5, Joachim Jankowski5,6, Verena Wally7,
Thomas Lettner7 and Rudolf E. Leube1
Acharacteristic featureof the skinblisteringdiseaseepidermolysis bullosa simplex is keratinfilament (KF)network
collapse causedby aggregationof thebasal epidermal keratin type II (KtyII) K5 and its type Ipartner keratin 14 (K14).
Here, we examine the role of keratin phosphorylation in KF network rearrangement and cellular functions. We
detect phosphorylation of the K5 head domain residue T150 in cytoplasmic epidermolysis bullosa simplex gran-
ules containing R125C K14 mutants. Expression of phosphomimetic T150D K5 mutants results in impaired KF
formation in keratinocytes. The phenotype is enhanced upon combination with other phosphomimetic K5 head
domain mutations. Remarkably, introduction of T150D K5 mutants into KtyII-lacking (KtyIIe/e) keratinocytes
prevents keratin network formation altogether. In contrast, phosphorylation-deficient T150A K5 leads to KFs with
reduced branching and turnover. Assembly of T150D K5 is arrested at the heterotetramer stage coinciding with
increasedheat shock protein association. Finally, reduced cell viability and elevated response to stressors is noted
in T150mutant cells. Taken together, our findings identify T150 K5 phosphorylation as an important determinant of
KF network formation and function with a possible role in epidermolysis bullosa simplex pathogenesis.
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INTRODUCTION
Keratin intermediate filaments (KFs) constitute a major part of
the epithelial cytoskeleton. They are obligatory hetero-
polymers of type I and type II keratin polypeptides. Each
polypeptide consists of a conserved a-helical, approximately
310-amino acidelong rod domain that is flanked by variable
amino-terminal head and carboxy-terminal tail domains
(Herrmann and Aebi, 2016; Loschke et al., 2015; Pan et al.,
2013). The significance of KFs for structural scaffolding of
epithelia is evident from the skin fragility observed in the
autosomal dominant blistering disease epidermolysis bullosa
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simplex (EBS), which is caused by mutations of the type II
keratin (K) 5 or type I K14 (Coulombe and Lee, 2012;
Homberg and Magin, 2014; Szeverenyi et al., 2008). KF
collapse into cytoplasmic granules is a characteristic feature
of EBS, especially upon mechanical and other types of stress
(Beriault et al., 2012; Chamcheu et al., 2011; Homberg et al.,
2015; Russell et al., 2004). A still unresolved conundrum is
why EBS-mutant keratins are able to form perfect 10-nm fil-
aments in vitro (Herrmann et al., 2002) and are often part of
normal-appearing KF networks in EBS-derived keratinocytes
(Beriault et al., 2012; Morley et al., 2003) and even in
epidermis of EBS patients (Anton-Lamprecht, 1994). These
observations suggest that the mutations are not responsible
for the deficiency in filament formation on their own but
require additional factors.

Keratin granules have also been described in the context of
increased keratin phosphorylation (reviews in Sawant and
Leube, 2017; Snider and Omary, 2014). Phosphorylation
targets almost exclusively the head and tail domains of ker-
atins (Gilmartin et al., 1980; Ikai and McGuire, 1983; Sawant
and Leube, 2017; Snider and Omary, 2014; Steinert, 1988)
with a preference for the head domain of type II keratins (Liao
et al., 1995; Yano et al., 1991). Type II keratins share the
conserved and unique sequence motif LLS/TPL in their H1
head subdomain, which is a major target for phosphorylation
(Toivola et al., 2002). Moreover, the H1 subdomain is
essential for normal KF assembly (Hatzfeld and Burba, 1994;
Wilson et al., 1992), and mutations in this domain have been
identified in EBS patients (www.interfil.org). Phosphorylation
of non-epidermal keratins was linked to multiple cellular
estigative Dermatology. www.jidonline.org 627
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dysfunctions in the context of diseases affecting the liver
(Guldiken et al., 2015; Ku et al., 1998; Stumptner et al.,
2000; Zatloukal et al., 2000), pancreas (Liao and Omary,
1996), and colon (Zhou et al., 2006). Whether phosphory-
lation of epidermal keratins has similar effects on cellular
physiology has not been examined in much detail.

The aim of this study was to resolve a potential link between
EBS mutations, the occurrence of phosphorylation, and cellular
physiology. Considering the shortcomings of other approaches
such as the lack of specificity in drug-induced changes in
phosphorylation (Feng et al., 1999; Liao et al., 1997) or the
limitedmeaning of in vitro studies for the in vivo situation (Deek
et al., 2016; Herrmann et al., 2002), we used a mutation-based
strategy to investigate the effect of phosphorylation in the keratin
type II head region in living cells.

RESULTS AND DISCUSSION
Phosphorylation of threonine 150 of K5 is linked to keratin
aggregation in generalized severe EBS

It has been suggested that keratin phosphorylation is involved
in granule formation of mutant keratin in EBS (Chamcheu
et al., 2011; Woll et al., 2007). To directly test whether ker-
atin phosphorylation is linked to granule formation, immu-
nolocalization of keratin phosphoepitopes was performed on
immortalized EBDM-4 keratinocytes carrying an R125C K14
mutation. The cells were derived from a patient with gener-
alized severe EBS, previously referred to as Dowling Meara-
type EBS (Fine et al., 2014). Using an antibody recognizing
the T150 phosphoepitope of the conserved LLS/TPL sequence
motif in the type II keratin K5 (Toivola et al., 2002) the
strongest immunoreactivity was detected in granules
(Figure 1b). Much weaker reactivity was seen in thick keratin
filament bundles and only very weak to no reactivity was
noted in thin filaments, as was the case in wild-type (WT)
control keratinocytes of line hKC (Figure 1a and b). The
fluorescence intensity patterns of the phosphoepitope-
specific antibodies differed significantly from those
observed with antibodies detecting keratins, irrespective of
their phosphorylation status, which stained keratin bundles
and granules at similar intensity and also clearly detected thin
filaments (Figure 1a and b). Expression of YFP-tagged R125C
K14 mutants in immortalized HaCaT keratinocytes also
showed an enrichment of the T150 K5 phosphoepitopes in
cytoplasmic granules (Figure 1c). Taken together, we
conclude that T150 K5 phosphorylation is increased in
granules that are formed in the presence of EBS mutant ker-
atins. Immunoblotting of whole-cell lysates showed that the
total level of K5 was reduced to 56% in EBDM-4 cells
compared with hKC cells and that the ratio of phosphorylated
to total K5 was approximately 1.5 times increased (see
Supplementary Figure S1 online). The reduced level of ker-
atins may be a consequence of increased keratin dynamics
coupled with keratin degradation (Loffek et al., 2010; Werner
et al., 2004; Windoffer et al., 2011).

Phosphomimetic keratin type II head domain mutations lead
to increased granule formation in the presence of WT
keratins

To delineate the potential role of T150 K5 phosphorylation in
EBS skin fragility, the impact of phosphomimetic keratin
mutation on KF network organization was studied. To this
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end, YFP-tagged WT K5 and phosphomimetic T150D K5
mutants were transfected into HaCaT keratinocytes. In both
instances, a typical KF network was detected in most trans-
fected cells, although granules were frequently observed next
to KFs (Figure 2a and b). In some instances, the KF network
was completely disrupted, leaving only granules (Figure 2c).
Quantitation showed a slight decrease in the filament-only
phenotype for the phosphomimetic mutant which was,
however, statistically not significant (76% vs. 65%)
(Figure 2d).

In addition to T150, multiple other potential phosphory-
lation sites are present in the K5 head domain (see
Supplementary Figure S2a online and PHOSIDA database).
To find out whether these other phosphorylation sites
exacerbate the T150D-induced perturbation of KF network
formation, further expression constructs were prepared
containing the T150D mutation in all possible combinations
with four other phosophomimetic mutations resulting in
four double, six triple, four quadruple, and one quintuple
mutants, which were transfected into HaCaT cells. Quanti-
tative assessment showed that increasing the number of
phosphomimetic sites correlated in general with a further
decrease of the filament-only phenotype, suggesting that KF
network formation was increasingly impaired (Figure 2d).
Despite this overall tendency, certain sites had little effect or
even improved the KF-network formation in some combina-
tions (e.g., S35, S76).

To test whether the observed effects also apply to other
keratins, we produced and tested a complementary set of
mutants for the type II K8 (Figure 2e and see Supplementary
Figure S2b and c). In this case, the phosphomimetic mutation
S73D in the conserved LLS/TPL sequence motif was com-
bined with four other phosphomimetic mutations of the head
domain, again in all possible combinations. Transfection of
the corresponding CFP-tagged fusion proteins showed very
similar effects to those observed for K5.

Our observations in cultured cells are supported
by published in vitro observations that showed that increasing
the ratio of phosphomimetic K8 mutants to WT K8 reduces KF
network connectivity (Deek et al., 2016). They are also in
accordance with the observation that the impairment of in vitro
KF assembly was proportional to the size of deletion in the K8
head domain (Hatzfeld and Burba, 1994).

Phosphomimetic T150 K5 mutation prevents keratin
network formation in the absence of WT keratins

The low degree of phenotypic penetrance of the phospho-
mimetic mutants in HaCaT transfectants suggested that the
phenotype was masked by endogenous WT keratins. This
prompted us to use murine epidermis-derived keratinocytes
lacking type II keratins (KtyIIe/e) (Kroger et al., 2013).
Although WT K5 YFP and phosphomimetic T150D K5 YFP
both integrated into the typical endogenous KF network of
WT control keratinocytes, only K5 YFP was able to induce KF
network formation in KtyIIe/e cells, whereas T150D K5 YFP
was not (Figure 2f, g, i, and j). Instead, strong diffuse fluo-
rescence was detectable in the cytoplasm of all T150D K5
YFP-transfected KtyIIe/e cells. In addition, small granules
were visible throughout the cytoplasm. Occasionally, fila-
mentous structures were seen in the cell periphery (Figure 2j).



Figure 1. Phosphorylated threonine

150 K5 (pT150 K5) epitopes are

enriched in cytoplasmic keratin

granules of generalized severe EBS-

derived keratinocytes. (a) Pan-keratin

antibody staining shows normal KF

network in keratinocytes derived from

a healthy individual (hKC), whereas

(b) KF reduction and abundant keratin

granules are present in generalized

severe EBS-derived EBDM-4 cells and

also in (c) epidermal HaCaT cells,

producing YFP R125C K14 mutants.

Counterstaining with antibody LJ4

recognizing pT150 K5 shows weak

reactivity of KF bundles in (a) hKC

(middle panel) and (b) most prominent

staining of granules in EBDM-4

(middle panel) and (c) YFP R125C

K14-producing HaCaT cells

(corresponding merged images with

nuclear DAPI stains in aec, right

panels). Scale bars ¼ 10 mm. EBS,

epidermolysis bullosa simplex; K,

keratin; KF, keratin filament.
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Obviously, the additional negative charge at the single T150
position in the K5 H1 head domain was sufficient to
completely prevent KF network formation in the absence of
WT type II keratins. In contrast, phosphorylation-deficient
T150A K5 YFP mutants formed a KF network in the WT and
KtyIIe/e background, although KF bundling appeared to be
enhanced (Figure 2h and k).

To further analyze the phenotypes of T150 K5 mutants,
stable clones were prepared for T150D and T150A K5
mutants, and WT K5 (Figure 2lep). They presented the same
features as transient transfectants. Some variability in the
number of granules was noted for the T150D K5 YFP mutant.
The peripheral filamentous structures of T150D K5 YFP were
seen starting only at 10 days after seeding.

Mutation of T150 in K5 affects keratin dynamics

Time-lapse imaging was performed to examine dynamic
properties of the T150D and T150A K5 YFP in KtyIIe/e ker-
atinocytes. A direct comparison of both mutants to WT K5
YFP is shown in Supplementary Movie S1 online. In T150D
K5 YFP keratinocytes, diffuse keratin fluorescence predomi-
nated in the cytoplasm. In addition, very small fluorescent
dots were detected moving at random throughout the cell.
Several of the brightest dots were seen at the tips of cell
protrusions. They were short-lived and had an overall ten-
dency to move inward. In T150A K5 YFP keratinocytes, small
particles were generated in the cell periphery. They grew,
while moving toward the cell interior, where they integrated
into the KF network. These features have been described as
part of the keratin cycle of assembly and disassembly
(Windoffer et al., 2011).

Next, fluorescence recovery after photobleaching
analyses were performed. As expected, fluorescence
recovery was fastest (>50% within 1 minute) for T150D K5
YFP keratinocytes (Figure 3a and b). At longer time scales,
reduced fluorescence recovery was detectable in T150A
K5 YFP cells compared with K5 YFP cells (Figure 3c and d).
Quantitative image analysis of segmented T150A K5
YFP-containing KF networks further showed that the
mean filament length between two branching points was
www.jidonline.org 629
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significantly increased (see Supplementary Figure S3
online).

Phosphomimetic T150D K5 mutants accumulate as soluble
heterotetramers, which show increased heat shock protein
association

We next wanted to biochemically define the assembly/
disassembly intermediates that are enriched in T150D K5
YFP keratinocytes. Therefore, the high salt-extractable solu-
ble and high salt-resistant insoluble cell fractions were
analyzed for the presence of K5 by immunoblotting.
Figure 4a shows that, in contrast to KtyIIe/e cells producing
WT K5 YFPand T150A K5 YFP, approximately 70% of K5 was
detected in the soluble pool of T150D K5 YFP KtyIIe/e

keratinocytes. To characterize the soluble pool in situ, cells
were treated with Triton X-100 (Sigma-Aldrich, St. Louis,
MO). This resulted in loss of the diffuse cytoplasmic fluo-
rescence and unmasking of cytoplasmic granules (Figure 4b).
We suggest that the diffuse fluorescence corresponds to the
soluble pool and the granules to the insoluble pool.
Journal of Investigative Dermatology (2018), Volume 138
Next, we wanted to determine the molecular nature of the
diffuse T150D K5 species. To this end, we used fluorescence
correlation spectroscopy (FCS). FCS is a microscopic tech-
nique that provides information on the local concentration
and diffusion of fluorescently labeled proteins. In FCS one
records the fluctuations of the fluorescence intensity from a
tiny measurement volume defined by the focal volume of the
microscope with high temporal resolution (micro- to milli-
seconds). These fluctuations are caused by fluorescing parti-
cles entering and leaving the observation volume and thus
carry information about the motion of these particles. To
extract mobility parameters of the fluorophores, the intensity
time traces are evaluated using a temporal autocorrelation
analysis, which yields FCS correlation curves. Finally, the
mobility parameters are extracted by fitting mathematical
models representing different experimental conditions (Elson
and Magde, 1974).

We used single-plane illumination microscopy-based FCS
as an extension of the FCS technology, which measures FCS
curves not only at a single spot at a given point in time but at
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thousands of different locations simultaneously within an
arbitrarily positionable 1- to 3-mmethick plane (Krieger et al.,
2015; Wohland et al., 2010). We were able to determine
mobility parameters of labeledkeratinparticleswith thehelpof
single plane illumination microscopy-FCS in live cells, even
when abundant filaments or granules were present. This was
achieved during postprocessing of the measurements by
selecting mobility parameters from filament- and granule-free
regions within the observation plane. The FCS-correlation
curves from these selected pixels were evaluated with a
model that represents a mixture of two diffusing species (slow
and fast) that best describes the data in an interpretable way in
live-cell FCS while not overfitting it (Dross et al., 2009; Sun
et al., 2015). Typically, the fast diffusing component can be
interpreted as more or less freely diffusing small particles. The
slowly diffusing component is typically interpreted to repre-
sent a combination of several effects in the complex environ-
ment of the cell: hindered (anomalous) diffusion, motion of
larger structures inside the cell (that fluorophores stick to), and
reorganization/motion of the entire cell. As expected, our
measurements showed a fast and a slow component. The slow
component showeddiffusion coefficients thatwere universally
in the range of Dslow z 0.2e0.4 mm2/second and can be
interpreted as suggested. The diffusion coefficients of the fast
diffusing pool (Dfast z 23.1 � 7 mm2/second for WT K5 YFP;
Dfastz 19.8� 7 mm2/second andDfastz 19.8�4 mm2/second
for T150DK5YFPclones 1 and2, respectively;Dfast� standard
deviation, n ¼ 20 cells) were not significantly different
www.jidonline.org 631
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between the different keratin-expressing cell lines. From the
measured diffusion coefficients and a calibration measure-
ment of cells expressing unbound YFP (Dfast z 27 � 8 mm2/
second, n ¼ 20), a hydrodynamic radius of approximately
9.3 nm was derived for WT K5 YFP and of approximately
10.9 nm for the T150DK5YFPmutants. Assuming a cylindrical
shape and taking length/diameter values for dimer, tetramer,
and unit length filament (ULF) forms of keratin assembly in-
termediates into account (Herrmann et al., 1999; Quinlan
et al., 1986), the soluble keratins are most likely tetrameric
(for hydrodynamic radii of vimentin assembly intermediates
see [Lopez et al., 2016]). The nonsignificant difference be-
tween the different keratin variants suggests that the molecular
Journal of Investigative Dermatology (2018), Volume 138
nature of the non-filamentous keratin poolwas unaltered upon
phosphomimetic mutation of T150.

To further corroborate our interpretation of the fast
FCS-component, crosslinking experiments were performed.
Disuccinimidyl suberate-mediated chemical crosslinking of
soluble T150D K5 YFP led to formation of an approximately
280-kD K5- and K14-positive species corresponding to the
expected size of K5 YFP/K14 tetramers (2 � 88 kD for K5 YFP
and 2 � 54 kD for K14) (Figure 4c). Additionally, sucrose
density gradient ultracentrifugation of soluble T150D K5 YFP
was carried out. The K5-positive fractions had a Svedberg
coefficient (s20,w) of approximately 6.6 S (Figure 4d), in line
with 4.7 S reported for the smaller K8/K18 tetramer (2� 54 kD



*

*

*
*0.3

0.2

0.1

0.0
24 48 72

Time [h]

[a
bs

or
ba

nc
e 

at
 5

90
 n

m
]

Cell viability

* p < 0.05

** p < 0.01
WT

Ktyll-/-

WT K5 YFP in Ktyll-/-

T150D K5 YFP in Ktyll-/- (clone 1)

T150D K5 YFP in Ktyll-/- (clone 2)

T150A K5 YFP in Ktyll-/- 

a

*

**

PJNK/total JNK5

4

3

[fo
ld

 c
ha

ng
e 

ov
er

 W
T

]

2

1

0

b

Figure 5. Mutation of T150 K5 alters cell viability and oxidative stress response. (a) MTTassay showing reduced cell viability of KtyIIe/e cells stably expressing

T150D K5 YFP and T150A K5 YFP compared with WT, KtyIIe/e, and WT K5 YFP KtyIIe/e cells at different times after seeding. The experiment was replicated

thrice, and each cell line was measured in triplicate. (b) Immunoblot showing up-regulation of phospho-JNK-1 (T183/Y185) in KtyIIe/e cells stably

expressing T150D K5 YFP and T150A K5 YFP compared with WT, KtyIIe/e, and WT K5 YFP KtyIIe/e keratinocytes in response to H2O2-induced oxidative stress

(10 mmol/L, 1 hour). Densitometric analysis of the phospho-JNK to total JNK ratio is shown at right. n ¼ 3; statistical analysis by Kruskal-Wallis analysis

of variance and Dunn posttest. Error bars: mean � standard deviation. h, hour; K, keratin; KtyII, basal epidermal keratin type II; MTT, 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide; WT, wild type.

M Sawant et al.
Consequences of Keratin Head Phosphorylation
for K8 and 2 � 48 kD for K18) (Chou et al., 1993; Lichtenstern
et al., 2012). As expected, the peak fractions contained K14
that could be cross-linked to K5 (Figure 4d).

To examine whether the assembly arrest coincides with spe-
cific protein association, we performed immunoprecipitation
experiments. HSP70-1A, HSP70-1B, HSP90-B1, and HSP105
were identified bymass spectrometry withMascot scores of 60,
59, 74, and 56, respectively. Immunoblots showed that the total
levels of the heat shock proteins were unaffected in the mutant
cell lines (Figure 4e and data not shown). The amount of HSP70
bound to T150D K5 was elevated compared with the WT
(Figure 4e, and for association of the K5 head domain and
HSP70 see also Planko et al., 2007).

The observed assembly dysfunction of T150D K5/K14 tet-
ramers may be a consequence of electrostatic repulsion be-
tween the negatively charged head domains of the T150D K5
mutant or defective staggering of the T150D K5/K14 tetramers
and/or higher polymers. Thismay impair properULF formation
or lead to reduced stability of ULFs. The increased heat shock
protein association can be taken as an indication of altered
spatial arrangement of the early assembly intermediates.

Mutation at T150 K5 reduces cell viability and up-regulates
JNK signaling

To test the consequences of T150 mutation for cell physiology,
cell viability was examined by 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay. Figure 5a
shows that both T150D K5YFP cell clones had significantly
reduced cell viability 72 hours after seeding. In addition, a
slight reduction in cell viability was noted for T150A K5 YFP
cells. To find out whether the reduced cell viability is linked to
increased cellular sensitivity to stress, we examined the
oxidative stress response in the KtyIIe/e-derived cell clones
using H2O2. Both T150D K5YFP and T150A K5YFP cells
presented increased JNK signaling compared with WT con-
trols (Figure 5b). ERK and p38 MAPK signaling, however, were
not significantly altered (see Supplementary Figure S4 online).
Elevated MAPK signaling and increased susceptibility to stress
were also reported for generalized severe EBS (Chamcheu
et al., 2011; Wagner et al., 2013; Wally et al., 2013). More-
over, the presence of mutant keratin granules lower the
threshold for inducing the unfolded protein response, which is
often coupled with altered mitochondrial function, leading to
oxidative stress (Malhotra and Kaufman, 2011; Senft and
Ronai, 2015).
OUTLOOK/CONCLUSIONS
The scheme in Figure 6 summarizes the situations encoun-
tered in the different cellular scenarios examined in this study
and relates them to the different assembly stages of keratin
network formation. It highlights the importance of the end
domains, especially in higher-order structures. It has been
emphasized that the rod domains are crucial for coiled-coil
formation of the parallel heterodimers and subsequent anti-
parallel, staggered alignment of heterodimers into nonpolar
tetramers with little or no influence of the protruding, mostly
unstructured head and tail domains (cf. (Guzenko et al.,
www.jidonline.org 633
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Figure 6. Scheme of keratin network

assembly in WT keratinocytes and

alterations in mutant cells examined

in this study. The middle column

depicts the known steps of keratin

network morphogenesis. Yellow bars

mark the steps affected in mutant

cells, the cytoplasmic network

alterations of which are shown at left

and right. KtyIIe/e keratinocytes

incapable of synthesizing keratin type

II polypeptides degrade unpaired type

I keratins. Introduction of T150D K5

YFP into KtyIIe/e cells allows

formation of tetramers but impairs

further assembly preventing keratin

network formation. However, filament

networks are still formed in the

presence of endogenous WT type II

keratins which, however, are coupled

with cytoplasmic granule formation.

T150A K5 YFP leads to increased

bundling and reduced branching in

KtyIIe/e cells. K, keratin; KtyII, basal

epidermal keratin type II; WT, wild

type.
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2017; Herrmann and Aebi, 2016)). The lateral packing of
eight tetramers into the lattice generating the ULF, however,
likely involves tighter contact of these regions. As shown in
this study, introduction of a phosphomimetic residue at T150
of the K5 head efficiently impedes this process and subse-
quent assembly steps. The scheme further emphasizes the
exponentially increasing tightness of intercalating ULF ends
upon longitudinal annealing into keratin filament precursors.
This is likely linked to close approximation of keratin poly-
peptide end domains, which may possibly bulge out from the
filament surface. The occasional presence of small granular
and elongated particles in T150D K5 YFP-producing KtyIIe/e

cells may indicate that ULF and keratin filament precursor
formation still occur, albeit at very low efficiency and only in
cells producing high levels of the mutant polypeptide.
Granule formation in wild-type keratinocytes synthesizing
T150D K5 YFP can be taken as further evidence for an
inhibitory effect of the phosphomimetic mutant on filament
formation. Phosphomimetic T150 mutation of K5 may also be
linked to inhibition of filament bundling and branching as
evidenced by network rarefication in these cells. On the
other hand, we could show that T150A mutation increased
filament bundling, branching, and stability. Taken together,
Journal of Investigative Dermatology (2018), Volume 138
T150 phosphorylation of K5 impairs keratin filament network
assembly and, conversely, favors disassembly of keratin
filaments.

We were surprised to find that a single phosphorylation site
in a single keratin polypeptide was sufficient to completely
prevent KF network formation given the large number of
phosphorylation sites within individual keratins, the large
number of kinases/phosphatases affecting keratin phosphor-
ylation, the heteropolymeric nature of keratins, and the
complexity of phenotypes reported so far and observed in this
study for keratin phosphomutants. The use of keratin type II-
depleted keratinocytes was crucial for uncovering the central
functions of T150 in the type II keratin 5.

The results provide provocative ideas about EBS patho-
genesis. They suggest that increased keratin phosphorylation
is not only a consequence of keratin mutation but may
actively influence disease progression through its effects on
KF network formation, keratin turnover, and stress-induced
signaling. It will be interesting to find out how the disease
phenotype is affected by inhibiting/modulating T150 phos-
phorylation. This could be accomplished by inhibiting p38
MAPK, ERK1, or CK1, which likely target T150 (see
Supplementary Figure S2).
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Antibodies

Polyclonal guinea pig antibodies against K5 and pan-keratin were

obtained from PROGEN (Heidelberg, Germany), monoclonal mouse

antibody directed against the LLpS/TPLmotif recognizing the T150 K5

phosphoepitope (LJ4)was fromBishrOmary (Toivola et al., 2002), and

polyclonal rabbit antibodies against K14 were recently described

(Homberg et al., 2015). Polyclonal rabbit antibodies against phospho-

histoneH3, p38MAPK, phospho-p38MAPK, ERK, phospho-ERK, JNK,

and phospho-JNK were from Cell Signaling (Danvers, MA). The sec-

ondary antibodies conjugated to horseradish peroxidase or fluoro-

chromes were from Dianova (Hamburg, Germany).

DNA cloning

Preparation of cDNA constructs for fluorescence-tagged WT K5 and

K8 and details on generating phosphorylation mutants are described

in the Supplementary Materials and Methods online (see also

Supplementary Tables S1 and S2 online).

Cell culture

The following cell lines were used in this study: human immortalized

HaCaT cells (Boukamp et al., 1988); murine WT and KtyIIe/e kera-

tinocytes (Kroger et al., 2013); human epidermis-derived EBDM-4

keratinocytes from a patient with generalized severe EBS and control

hKC keratinocytes from a healthy individual. The latter two cell lines

were generated by E6/E7-mediated immortalization using a retro-

viral plxsn vector (Halbert et al., 1992) encoding E6/E7 and con-

taining a G418 cassette for selection. Details on growth, passaging,

transfection, clonal selection, MTT viability assay, and oxidative

stress protocols are provided in Supplementary Materials and

Methods.

Biochemical assays

Biochemical analyses, including cell fractionation, immunoblotting,

co-immunoprecipitation, chemical crosslinking, sucrose gradient

centrifugation, and mass spectrometry, are provided in the

Supplementary Materials and Methods.

Statistical analysis

Prism 5 software (GraphPad, San Diego, CA) was used for statistical

analysis. Comparison between two samples was performed with

unpaired t test when data showed Gaussian distribution and Mann-

Whitney test when otherwise. More than two sample groups were

analyzed by one-way analysis of variance by Kruskal-Wallis test

followed by Dunn posttest.
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